Skip to main content
Log in

Mixed MgAl Oxide Supported Potassium Promoted Molybdenum Sulfide as a Selective Catalyst for Higher Alcohol Synthesis from Syngas

MoS2/K2CO3 on Mixed Metal Oxides for Higher Alcohol Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A Mg/Al mixed metal oxide material (MMO) is introduced as a support for K2CO3 promoted MoS2 in CO hydrogenation reactions at 310 °C and 1,500 psig. The catalyst is shown to be more selective for C2–C4 linear alcohols (substantially so for C3–C4 linear alcohols) than for methanol and offers good alcohol to hydrocarbon selectivity. Methanol selectivity of the MMO supported catalyst deviates greatly from the Anderson–Shultz–Flory distribution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. There are several views on the appropriate H2S concentration for catalytic higher alcohol synthesis using MoS2-based materials. Stevens et al. [34] stated that H2S levels below 100 ppm would not significantly affect the structure of MoS2 materials and that at levels above that concentration “no advantage is realized.” However, Christensen et al. [47] indicate that H2S concentrations above 100 ppm cause the catalyst to stabilize more quickly and improve productivity, while simultaneously leading to higher hydrocarbon selectivities. Given this study’s goal to obtain high alcohol selectivities while minimizing hydrocarbons, 50 ppm H2S in the syngas feed was used.

References

  1. Mills AG (1994) Fuel 73:1243

    Article  CAS  Google Scholar 

  2. Fischer F, Tropsch H (1926) Chem Ber 59:830

    Google Scholar 

  3. Surisetty VR, Dalai AK, Kozinski J (2011) Appl Catal A 404:1

    CAS  Google Scholar 

  4. Garbow IC, Mavrikakis M (2011) ACS Catal 1:365

    Article  Google Scholar 

  5. Gupta M, Smith ML, Spivey JJ (2011) ACS Catal 1:641

    Article  CAS  Google Scholar 

  6. Woo HC, Park KY, Kim YG, Nam I-S, Chung JS, Lee JS (1991) Appl. Catal. 75:267

    Article  CAS  Google Scholar 

  7. Lui Z, Li X, Close MR, Cugler EL, Pertersen JL, Dadyburjor DB (1997) Ind Eng Chem Res 36:3085

    Article  Google Scholar 

  8. Youchang X, Naasz BM, Somorjai GA (1986) App. Catal. 27:233

    Article  Google Scholar 

  9. Murchison CB, Conway MM, Stevens RR, Quarderer GJ (1988) In: 9th international congress on catalysis, Calgary

  10. Yang Y, Wang Y, Liu S, Song Q, Xie Z, Gao Z (2009) Catal Lett 127:448–455

    Article  CAS  Google Scholar 

  11. Bao J, Fu Y-L, Bian G-Z (2008) Catal Lett 121:151

    Article  CAS  Google Scholar 

  12. Ma X, Lin G, Zhange H (2006) Catal Lett 111:141

    Article  CAS  Google Scholar 

  13. Zhang Y, Sun Y, Zhong B (2001) Catal Lett 76:249

    Article  CAS  Google Scholar 

  14. Nunan JG, Bogdan CE, Klier K, Smith KJ, Young CW, Herman RG (1988) J Catal 113:410

    Article  CAS  Google Scholar 

  15. Nunan JG, Bogdan CE, Klier K, Smith KJ, Young C, Herman RG (1989) J Catal 116:195

    Article  CAS  Google Scholar 

  16. Nunan JG, Herman RG, Klier K (1989) J Catal 116:222

    Article  CAS  Google Scholar 

  17. Haider MA, Gogate MR, Davis RJ (2009) J Catal 261:9

    Article  CAS  Google Scholar 

  18. Schwartz V, Campos A, Egbebi A, Spivey JJ, Overbury SH (2011) ACS Catal 1:1298

    Article  CAS  Google Scholar 

  19. Arakawa H, Fukushima T, Ichikawa M, Natsushita S, Takeuchi K, Matsuzaki T, Sugi Y (1985) Chem Lett 7:881

    Article  Google Scholar 

  20. Bian G, Fu Y, Ma Y (1999) Catal Today 51:187

    Article  CAS  Google Scholar 

  21. Muramatsu A, Takashi T, Tominaga H (1987) Bull Chem Soc Jpn 60:3157

    Article  CAS  Google Scholar 

  22. Fang K, Li D, Lin M, Xiang M, Wei W, Sun Y (2009) Catal Today 147:133

    Article  CAS  Google Scholar 

  23. Spivey JJ, Egbedi A (2007) Chem Soc Rev 36:1514

    Article  CAS  Google Scholar 

  24. Subramani V, Gangwal SG (2008) Energy Fuel 22:814

    Article  CAS  Google Scholar 

  25. Gang L, Chengfang Z, Yanqing C, Zhibin Z, Yianhui N, Linjun C, Fong Y (1997) Appl Catal A 150:243

    Article  Google Scholar 

  26. Wu X-M, Guo Y–Y, Zhou J-M, Lin G-D, Dong X, Zhang H-B (2008) Appl Catal A 340:87

    Article  CAS  Google Scholar 

  27. Iranmahboob J, Hill DO (2002) Catal Lett 78:49

    Article  CAS  Google Scholar 

  28. Iranmahboob J, Hill DO, Toghiani H (2001) Appl Surf Sci 185:72

    Article  CAS  Google Scholar 

  29. Surisetty VR, Tavasoli A, Dalai AK (2009) Appl Catal A 365:243

    Article  CAS  Google Scholar 

  30. Zhang JY, Wang YJ, Chang L (1995) Appl Catal A 126:1205

    Google Scholar 

  31. Bian G-Z, Fan L, Fu Y-L, Fujimoto K (1998) Ind Eng Chem Res 37:1736

    Article  CAS  Google Scholar 

  32. Lowenthal E, Schwarz S, Foley HC (1995) J Catal 154:96

    Article  Google Scholar 

  33. Lee JS, Kim S, Lee KH, Nam IS, Chung JS, Kim YG, Woo HC (1994) Appl Catal A 110:11

    Article  CAS  Google Scholar 

  34. Stevens RR (1988) Process for producing alcohols from synthesis gas. U.S. Patent 4752622

  35. Woo HC, Nam I-S, Lee JS, Chung JS, Lee KH, Kim YG (1992) J Catal 138:525

    Article  CAS  Google Scholar 

  36. Dianis WP (nd) Appl Catal 30:99

  37. Li D, Yang C, Li W, Sun Y, Zhong B (2005) Top Catal 32:233

    Article  CAS  Google Scholar 

  38. Bezen MCI, Breitkopf C, Lercher JA (2011) ACS Catal 1:1384

    Article  CAS  Google Scholar 

  39. Valente J (2000) J Catal 189:370

    Article  CAS  Google Scholar 

  40. Fishel CT, Davis RJ (1994) Catal Lett 25:87

    Article  CAS  Google Scholar 

  41. Lei X, Zhang F, Yang L, Guo X, Yuanyuan T, Fu S, Li F, Evans DG, Duan X (2007) AICHE 54:932

    Article  Google Scholar 

  42. Meloni D, Monaci R, Solinas V, Auroux A, Dumitriu E (2008) Appl Catal A 350:86

    Article  CAS  Google Scholar 

  43. Prinetto F, Ghiotti G, Graffin P, Tichit D (2000) Microporus Mesoporus Mater 39:229–247

    Article  CAS  Google Scholar 

  44. Takehira K (2004) Catal Commun 5:209

    Article  CAS  Google Scholar 

  45. Perez-Ramirez J, Abello S, van der Pers NM (2007) Chem-Eu J 13:870

    Google Scholar 

  46. Iranmahboob J, Toghiani H, Hill DO (2003) Appl Catal A 247:207

    Article  CAS  Google Scholar 

  47. Christensen JM, Mortensen PM, Trane R, Jensen PA, Jensen AD (2009) Appl Catal A 366:29

    Article  CAS  Google Scholar 

  48. Muller A, Weber T (1991) Appl Catal 77:243

    Article  Google Scholar 

  49. Surisetty VR, Dalai AK, Kozinski J (2011) Energy Fuels 25:580

    Article  CAS  Google Scholar 

  50. Nam I-S, Park TY, Kim YG (1997) Ind Eng Chem Res 36

  51. Woo HC, Nam I-S (1993) J. S. L. A. J. S. Chung, Y. G. Kim. J Catal 142:672

    Article  CAS  Google Scholar 

  52. Qi H (2003) Catal Commun 4:339–342

    Article  CAS  Google Scholar 

  53. Cosimo JID, Apesteguia CR, Gines MJL, Iglesia E (2000) J Catal 190:261

    Article  Google Scholar 

  54. Christensen JM, Jensen PA, Schiødt NC, Jensen AD (2010) ChemCatChem 2:523

    Article  CAS  Google Scholar 

  55. Santiesteban JG, Bogdan CE, Herman RG, Klier K (1988) In: 9th annual congress on catalysis, Calgary, p 561

  56. Bowker M, Houghton H, Waugh KC (1981) J Chem Soc Faraday Trans 1:77

    Google Scholar 

  57. Tsoncheva T, Ivanova L, Minchev C, Froba M, Col J (2009) Intf Sci 333:277

    CAS  Google Scholar 

  58. Goodarznia S, Smith KJ (2010) J Mol Catal A 320:1

    Article  CAS  Google Scholar 

  59. Jiang M, Bian G-Z, Fu Y-L (1994) J Catal 146:144

    Article  CAS  Google Scholar 

  60. Calverley EM, Smith KJ (1991) J Catal 130:616

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to The Dow Chemical Company for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pradeep K. Agrawal or Christopher W. Jones.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrill, M.R., Thao, N.T., Agrawal, P.K. et al. Mixed MgAl Oxide Supported Potassium Promoted Molybdenum Sulfide as a Selective Catalyst for Higher Alcohol Synthesis from Syngas. Catal Lett 142, 875–881 (2012). https://doi.org/10.1007/s10562-012-0827-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0827-z

Keywords

Navigation