Skip to main content
Log in

Hydroxylation of Phenol Catalyzed by Oxovanadium(IV) of Salen-Type Schiff Base Complexes with Hydrogen Peroxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Active and highly selective catalytic systems of oxovanadium(IV) salen-type have been prepared and characterized by various physico-chemical techniques. Substituted salen-type Schiff base ligands were prepared from 3-ethoxy salicylaldehyde with 1,2-diaminobenzene and 1,8-diaminonaphthalene abbreviated (EtOsalphen) and (EtOsalnaph), respectively. The catalytic activity of the complexes for hydroxylation of phenol to catechol and hydroquinone using H2O2 as an oxidant has been studied. The best suited reaction conditions were obtained by considering the effect of solvent, concentration of substrate, reaction time, concentration of catalyst and temperature. Under the optimized reaction conditions, VO-(EtOsalphen) catalyst shows high conversion (71%) at a short reaction time (2 h) with selectivity of 92.5% towards catechol, while VO-(EtOsalnaph) complex also shows higher conversion (76.6%) after longer reaction time (6 h) with almost similar selectivity to catechol (94.2%).

Graphical Abstract

Synthesis and characterization of active systems of oxovanadium (IV) salen-type Schiff base has. The catalytic activities of these complexes for hydroxylation of phenol using H2O2 as an oxidant has been studied and were found to be a highly active and selective towards catechol formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Structure 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sheldon RA, van Santen RA (1995) Catalytic oxidation, principles and applications. World Scientific, Singapore

    Google Scholar 

  2. Zamian JR, Dockal ER (1996) Trans Met Chem 21:370–376

    Article  CAS  Google Scholar 

  3. Kolawole GA, Patel KS, Earnshaw A (1985) J Coord Chem 14:57–63

    Article  CAS  Google Scholar 

  4. Kianfar AH, Mohebbi S (2007) J Iranian Chem Soc 4:215–220

    CAS  Google Scholar 

  5. Tai X, Yin X, Chen Q, Tan M (2003) Molecules 8:439–443

    Article  CAS  Google Scholar 

  6. Katsuki T (1995) Coord Chem Rev 140:189–214

    Article  CAS  Google Scholar 

  7. Canali L, Sherrington DC (1999) Chem Soc Rev 28:85–93

    Article  CAS  Google Scholar 

  8. Dalton CD, Ryan KM, Wall VM, Bousquet C, Gilheany DG (1998) Top Catal 5:75–91

    Article  CAS  Google Scholar 

  9. Cozzi PG (2004) Chem Soc Rev 33:410–421

    Article  CAS  Google Scholar 

  10. Larrow JF, Jacobsen EN (2004) Top Organomet Chem 6:123–152

    CAS  Google Scholar 

  11. Cohen CT, Chu T, Coates GW (2005) J Am Chem Soc 27:10869–10878

    Article  Google Scholar 

  12. Groger H (2003) Chem Rev 103:2795–2828

    Article  Google Scholar 

  13. Sammis GM, Jacobsen EN (2003) J Am Chem Soc 125:4442–4443

    Article  CAS  Google Scholar 

  14. Sun W, Wang H, Xia C, Li J, Zhao P (2003) Angew Chem Int Ed 42:1042–1044

    Article  CAS  Google Scholar 

  15. Sammis GM, Danjo H, Jacobsen EN (2004) J Am Chem Soc 126:9928–9929

    Article  CAS  Google Scholar 

  16. Wang S-X, Wang M-X, Wang D-X, Zhu J (2008) Angew Chem Int Ed 47:388–391

    Article  CAS  Google Scholar 

  17. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) Chem Rev 104:849–902

    Article  CAS  Google Scholar 

  18. Rehder D (1991) Angew Chem Int Ed Engl 30:148–167

    Article  Google Scholar 

  19. Marques AP, Dockal ER, Skrobot FC, Rosa ILV (2007) Inorg Chem Commun 10:255–261

    Article  CAS  Google Scholar 

  20. Bunce S, Cross RJ, Farrugia LJ, Kunchandy S, Meason LL, Muir KW, O’Donnell M, Peacock RD, Stirling D, Teat SJ (1998) Polyhedron 17:4179–4187

    Article  CAS  Google Scholar 

  21. Pyrz JW, Roe AL, stern LJ, Que L Jr (1985) J Am Chem Soc 107:614–620

    Article  CAS  Google Scholar 

  22. Mashuta MS, Webb RJ, McCusker JK, Schmitt EA, Oberhausen KJ, Richardson JF, Buchanan RM, Hendrickson DN (1992) J Am Chem Soc 114:3815–3827

    Article  CAS  Google Scholar 

  23. Ligtenbarg AGJ, Hage R, Feringa BL (2003) Coord Chem Rev 237:89–101

    Article  CAS  Google Scholar 

  24. Maurya MR, Kumar M, Titinchi SJJ, Abbo HS, Chand S (2003) Catal Lett 86:97–105

    Article  CAS  Google Scholar 

  25. Maurya MR, Saklani H, Kumar M, Chand S (2004) Catal Lett 93:121–127

    Article  CAS  Google Scholar 

  26. Nayak M, Hazra S, Lemoine P, Koner R, Lucas CR, Mohanta S (2008) Polyhedron 27:1201–1213

    Article  CAS  Google Scholar 

  27. Bermejo MR, Fernandez MI, Gonzalez-Noya AM, Maneiro M, Pedrido R, Rodriguez MJ, Garcia-Monteagudo JC, Donnadieu B (2006) J Inorg Biochem 100:1470–1478

    Article  CAS  Google Scholar 

  28. Felicio RC, da Silva GA, Ceridorio LF, Dockal ER (1999) Synth React Inorg Metal-Org Chem 29:171–192

    CAS  Google Scholar 

  29. Syamal A, Carey EF, Theriot LJ (1973) Inorg Chem 12:245–248

    Article  CAS  Google Scholar 

  30. Syamal A, Kale KS (1979) Inorg Chem 18:992–995

    Article  CAS  Google Scholar 

  31. Goodgame M, Hayward PJ (1966) J Chem Soc A 632–634

  32. Rajan AO, Chakravorty A (1981) Inorg Chem 20:660–664

    Article  CAS  Google Scholar 

  33. Abbo HS, Titinchi SJJ (2009) Appl Catal A: Gen 356:167–171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salam J. J. Titinchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alsalim, T.A., Hadi, J.S., Al-Nasir, E.A. et al. Hydroxylation of Phenol Catalyzed by Oxovanadium(IV) of Salen-Type Schiff Base Complexes with Hydrogen Peroxide. Catal Lett 136, 228–233 (2010). https://doi.org/10.1007/s10562-010-0326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0326-z

Keywords

Navigation