Skip to main content

Advertisement

Log in

In situ Aberration Corrected-Transmission Electron Microscopy of Magnesium Oxide Nanocatalysts for Biodiesels

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Biofuels are promising renewable energy sources and can be derived from vegetable oil feedstocks. Although solid catalysts show great promise in plant oil triglyceride transesterification to biodiesel, the identification of active sites and operating surface nanostructures created during their processing is essential for the development of efficient heterogeneous catalysts. Systematic, direct observations of dynamic MgO nanocatalysts from a magnesium hydroxide-methoxide precursor were performed under controlled calcination conditions using novel in situ aberration corrected-transmission electron microscopy at the 0.1 nm level and quantified with catalytic reactivity and physico-chemical studies. Surface structural modifications and the evolution of extended atomic scale glide defects implicate coplanar anion vacancies in active sites in the transesterification of triglycerides to biodiesel. The linear correlation between surface defect density (and therefore polarisability) and activity affords a simple means to fine tune new, energy efficient nanocatalysts for biofuel synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Graedel TE (2002) Handbook of green chem and technology. In: Clark JH, Macquarrie D (eds) Blackwell, Oxford

  2. Ma F, Hanna MA (1999) Bioresour Technol 70:1

    Article  CAS  Google Scholar 

  3. Meher LC, Sagar D, Naik SN (2004) Renew Sustain Energy Rev 9:1

    Google Scholar 

  4. Fukuda H, Kondo A, Noda H (2001) J Biosci Bioeng 92:405

    Article  CAS  Google Scholar 

  5. Narasimharao K, Lee AF, Wilson K (2007) J Bio Math Bioenergy 1:1

    Article  Google Scholar 

  6. MacLeod CS et al (2008) Chem Eng J 135:63

    Article  CAS  Google Scholar 

  7. Bournay L, Casanave D (2005) Catal Today 106:190

    Article  CAS  Google Scholar 

  8. Tanabe K, Misono M, Ono Y, Hattori H (1989) Stud Surf Sci Catal 51:17

    Google Scholar 

  9. Cantrell DG, Gillie LJ, Lee AF, Wilson K (2005) Appl Catal A 287:183

    Article  CAS  Google Scholar 

  10. Li E et al (2002) Energy Fuels 22:145

    Article  Google Scholar 

  11. Deserio M, Mohapatra H, Zenobi R, Deckert V (2006) Ind Eng Chem Res 45:3009

    Article  Google Scholar 

  12. Lopez Granados L, Poves M, Alonso DM, Fierro G et al (2007) Appl Catal B 73:317

    Article  Google Scholar 

  13. Liu XJ et al (2008) Fuel 87:216

    Article  CAS  Google Scholar 

  14. Watkins RS et al (2004) Green Chem 6:335

    Article  CAS  Google Scholar 

  15. Wilson K et al (2008) Green Chem 10:654

    Article  CAS  Google Scholar 

  16. Albuquerque MCG et al (2008) Appl Catal A 33:35

    Google Scholar 

  17. Thangaraja N et al (1991) Ultram 37:362

    Article  Google Scholar 

  18. Kouzu M, Kasuno T, Tajika M, Yamanaka S, Hidaka J (2008) Appl Catal A 334:357

    Article  CAS  Google Scholar 

  19. Kiss A, Dimian A, Rothenberg G (2006) Adv Synth Catal 348:75

    Article  CAS  Google Scholar 

  20. Gai PL et al (1995) Science 267:661

    Article  CAS  Google Scholar 

  21. Boyes ED, Gai PL (1997) Ultramicroscopy 67:219

    Article  CAS  Google Scholar 

  22. Gai PL, Boyes ED (2009) Microscopy Research & Technique 72(3):153–164 (Wiley)

    Article  CAS  Google Scholar 

  23. Gai PL, Boyes ED (2008) Instrumentation and methods vol 1. In: Luysberg M, Tillman K, Weirich T (eds) Proceedings of 14th European Microscopy Congress, Springer, Berlin, p 479

  24. Gai PL, Boyes ED, Hansen PL, Helveg S, Giogioand S, Henry CR (2007) MRS Bull 32:1044

    CAS  Google Scholar 

  25. Hirsch PB, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1977) Electron microscopy of thin crystals. Kruger, Florida

    Google Scholar 

  26. Setiawan A et al (2003) Thin Solid Films 445:213

    Article  CAS  Google Scholar 

  27. Williams DB, Carter CB (1996) Transmission electron microscopy. Plenum Press, NY

    Google Scholar 

  28. Shewmon PG (1963) Diffusion in solids. McGraw Hill, New York

    Google Scholar 

  29. Gai PL et al (1997) J Phys Chem (Anion vacancy induced glide shear defect mechanism in (catalytic) oxides accommodating nonstoichiometry and preserving anion vacancies without crystal collapse is referred to as Gai’s mechanism) 101:9916

  30. Gai PL (1997) Acta Crystallogr B 53:346

    Article  Google Scholar 

Download references

Acknowledgments

We thank the University of York, JEOL and Yorkshire Forward/European Regional Development fund (ERDF) for sponsoring the Nanocentre. This work was supported by the Engineering and Physical Sciences Research Council [EP/F063423/1, EP/G007594/1]. J.M.M. acknowledges BP Biofuels for studentship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha L. Gai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gai, P.L., Montero, J.M., Lee, A.F. et al. In situ Aberration Corrected-Transmission Electron Microscopy of Magnesium Oxide Nanocatalysts for Biodiesels. Catal Lett 132, 182–188 (2009). https://doi.org/10.1007/s10562-009-0085-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0085-x

Keywords

Navigation