Skip to main content
Log in

Thermodynamic, kinetic and mechanistic investigations of Piperazine oxidation by Diperiodatocuprate(III) complex in aqueous alkaline medium

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of piperazine by the copper complex, diperiodatocuprate(III) in alkaline medium was studied at 298 K, at an ionic strength of 2.0 x 10 −2 mol dm −3. The reaction between piperazine and diperiodatocuprate(III) in aqueous alkaline medium exhibited 1:2 stoichiometry. The oxidation products were identified by UV-Visible, GC-MS and IR spectral studies. In the present study we have obtained different kinetic observations. The reaction exhibited unit order in case of diperiodatocuprate(III), while less than unit order with respect to piperazine. The addition of alkali and periodate retarded the rate of reaction. The effects of added products, ionic strength and dielectric constant on the rate of the reaction were also studied. The active species of diperiodatocuprate(III) in alkaline media is [Cu(OH) 2(H 3 IO 6)] . The activation parameters with respect to the rate determining step and the thermodynamic quantities with respect to the equilibrium steps were evaluated and discussed. The plausible mechanism consistent with the experimental results was proposed and discussed in detail.

The kinetics of oxidation of Piperazine by Diperiodatocuprate(III) complex in aqueous alkaline medium was studied spectrophotometrically. The possible mechanism was proposed based on the experimental rate laws. The reaction constants involved in the different steps of mechanism were evaluated and thermodynamic quantities were also calculated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Figure 4
Scheme 2
Figure 5

Similar content being viewed by others

References

  1. Reddy B, Sethuram B and Navaneeth Rao T 1984 Indian J. Chem 23A 593

    CAS  Google Scholar 

  2. Levason W and Spicer M D 1987 Coord. Chem. Rev 76 45

    Article  CAS  Google Scholar 

  3. Balikungeri A, Pelletier M and Monnier D 1977 Inorg. Chim. Acta 22 7

    Article  CAS  Google Scholar 

  4. Niu W, Zhu Y, Hu K, Tong C and Yang H 1996 Int. J. Chem. Kinet 28 899

    Article  CAS  Google Scholar 

  5. Rozovoskii G I, Misyavichyus A K and Prokopchik A Y 1975 Kinet. Catal. 16 337

    Google Scholar 

  6. Kitajima K N and Moro-oka Y 1994 Chem. Rev. 94 737

    Article  CAS  Google Scholar 

  7. Ramreddy M G, Sethuram B and Navaneeth Rao T 1978 Indian J. Chem 16A 313

    Google Scholar 

  8. Kovat Z 1960 Acta. Chim. Hung 22 313

    Google Scholar 

  9. Crenshaw G L and Shaver R J 1956 In Down to Earth (Michigan: Dow Chemical Company)

    Google Scholar 

  10. Maynard W R Jr. 1961 J. AOAC Int. 42 610

    Google Scholar 

  11. Goodman L S and Gilman A 1956 In The Pharmacological Basis of Therapeutics, 2nd Edition (New York: Macmillan)

    Google Scholar 

  12. Jouve A, Grass A and Benyamine R 1963 Vie Med. 44 115

    Google Scholar 

  13. Mc Nair T J, Wibin F A, Hoppe E T, Schmidt J L and de Peyster F A 1963 J. Surg. Res. 3 130

    Article  CAS  Google Scholar 

  14. Mikhalev V A, Dorokhova M I and Smolina N E 1963 Meditsinskaia promyshlennost’ SSSR 17 17

    CAS  Google Scholar 

  15. Foye W O and Kay D H 1962 J. Pharm. Sci. 51 1098

    Article  CAS  Google Scholar 

  16. Kiran T S, Hiremath D C and Nandibewoor S T 2007 Z. Phys. Chem. 221 501

    Article  CAS  Google Scholar 

  17. Shetti N P, Hegde R N and Nandibewoor S T 2009 Cent. Eur. J. Chem. 7 929

    CAS  Google Scholar 

  18. Aravindakshan K K and Muraleedharan K 1990 Thermochim. Acta 159 101

    Article  CAS  Google Scholar 

  19. Chandrashekar, Venkatesha B M, Ananda S and Made Gowda N M 2013 Modern Research in Catalysis 2 157

    Article  CAS  Google Scholar 

  20. Panigrahi G P and Misro P K 1978 Ind. J. Chem. 16A 201

    CAS  Google Scholar 

  21. Jaiswal P K and Yadava K L 1973 Ind. J. Chem. 11 83

    Google Scholar 

  22. Murthy C P, Sethuram B and Navaneeth Rao T 1981 Z. Phys. Chem. 262 336

    CAS  Google Scholar 

  23. Jeffery G H, Bassett J, Mendham J and Denny R C 1996 In Vogel’s Textbook of Quantitative Chemical Analysis 5th ed. (Essex UK: ELBS, Longman) p. 455

    Google Scholar 

  24. (a) Kolthoff I M, Meehan E J and Carr E M 1953 J. Am. Chem. Soc. 75 1439; (b) Hiremath G C, Mulla R M and Nandibewoor S T 2005 J. Chem. Res. 197

  25. Kiran T S, Hiremath C V and Nandibewoor S T 2006 Appl. Cat. A: Gen. 305 79

    Article  Google Scholar 

  26. Sethuram B 2003 In Some aspects of electron transfer reactions involving organic molecules (New Delhi: Allied Publishers) p. 78

    Google Scholar 

  27. Lister M W 1953 Can. J. Chem. 31 638

    Article  CAS  Google Scholar 

  28. Hegde R N, Shetti N P and Nandibewoor S T 2009 Polyhedron 28 3499

    Article  CAS  Google Scholar 

  29. Hosamani R R, Hedge R N and Nandibewoor S T 2010 Monatsh. Chem. 141 1069

    Article  CAS  Google Scholar 

  30. Cohen G L and Atkinson G 1964 Inorg. Chem. 3 1741

    Article  CAS  Google Scholar 

  31. Pauling L 1969 In The Nature of the Chemical Bond 3rd ed. (New Delhi: Oxford & IBH publishers)

    Google Scholar 

  32. Walling C 1957 In Free Radicals in Solution (New York: Academic Press)

    Google Scholar 

  33. Farokhi S A and Nandibewoor S T 2003 Tetrahedron 59 7595

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHARANAPPA T NANDIBEWOOR.

Additional information

Supplementary Information

The order with respect to alkali concentration and periodate concentration were obtained from the plot of log k obs versus log [OH ] (figure S1) and log k obsversus log\([\text {IO}_{4}^{-}]\) (figure S2). Supplementary Information is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 26.9 KB)

Appendix

Appendix

$$\begin{array}{@{}rcl@{}} {}\text{Rate}\!\!\!\! &=&\!\!\!\!\! - \mathrm{d}[\text{DPC}]_{\mathrm{T}} / \text{dt} = \mathrm{k} [\mathrm{C}] \\&=&\!\!\!\!\!\text{kK}_{1}\mathrm{K}_{2}\mathrm{K}_{3} [\text{PPZ}] [\text{DPC}]_{\mathrm{f}} / ([\text{OH}][\mathrm{H}_{3}\text{IO}_{6}^{\mathrm{2-}}]) \end{array} $$
(A1)

[DPC] f and [DPC] T are given as,

$$ [\text{DPC}]_{\mathrm{f}} = [\text{Cu}(\text{OH})_{2}(\mathrm{H}_{3}\text{IO}_{6})(\mathrm{H}_{2}\text{IO}_{6})^{\mathrm{4-}}] $$
(A2)
$$\begin{array}{@{}rcl@{}} [\text{DPC}]_{\mathrm{T}} &=& [\text{DPC}]_{\mathrm{f}} + [\text{Cu}(\text{OH})_{2}(\mathrm{H}_{3}\text{IO}_{6})_{2}]^{\mathrm{3-}} \\&&+ [\text{Cu}(\text{OH})_{2} (\mathrm{H}_{3}\text{IO}_{6})^{\mathrm{-}}+ [\mathrm{C}] \end{array} $$
(A3)

where, C denotes {DPC-PPZ} complex.

$$\begin{array}{@{}rcl@{}} {}[\text{DPC}]_{\mathrm{T } }\!\!\!\! &=&\!\!\!\! [\text{DPC}]_{\mathrm{f } }\{1+ \mathrm{K}_{\mathrm{1 } }/ [\text{OH}^{\mathrm{-}}] \\&&+ \mathrm{K}_{1}\mathrm{K}_{2} / [\mathrm{H}_{3}\text{IO}_{6}^{\mathrm{2-}}][\text{OH}^{\mathrm{-}}] \\&&+ \mathrm{K}_{1}\mathrm{K}_{2}\mathrm{K}_{3} [\text{PPZ}] / [\mathrm{H}_{3}\text{IO}_{6}^{\mathrm{2-}}][\text{OH}^{\mathrm{-}}]\} \end{array} $$
(A4)
$$\begin{array}{@{}rcl@{}} [\text{DPC}]_{\mathrm{f}} &=& [\text{DPC}]_{\mathrm{T}} [\mathrm{H}_{3}\text{IO}_{6}^{\mathrm{2-}}][\text{OH}^{\mathrm{-}}] / \{[\mathrm{H}_{3}\text{IO}_{6}^{\mathrm{2-}}][\text{OH}^{\mathrm{-}}] \\&&+ \mathrm{K}_{1}[\mathrm{H}_{3}\text{IO}_{6}^{\mathrm{2-}}] + \mathrm{K}_{1}\mathrm{K}_{2} \\&&+ \mathrm{K}_{1}\mathrm{K}_{2}\mathrm{K}_{3} [\text{PPZ}]\} \end{array} $$
(A5)

Under the experimental conditions, [OH ] f∼ 10 3[DPC] T and [PPZ] T∼(2–10)[DPC] T (see table 1). Hence, corrections for [OH ] f and [PPZ] f due to interaction with DPC were not applied (i. e., [KOH] added= [OH ] f and [PPZ] f= [PPZ] T were assumed).

Substituting equation (A5) in equation (A1), we get,

$$\begin{array}{@{}rcl@{}} \text{Rate} &=& - \mathrm{d}[\text{DPC}]_{\mathrm{T}}/\text{dt} = \text{kK}_{1}\mathrm{K}_{2}\mathrm{K}_{3}[\text{PPZ}]_{\mathrm{T}} [\text{DPC}]_{\mathrm{T}} /\\ &&\{[\mathrm{H}_{3}\text{IO}_{6}^{\mathrm{2-}}][\text{OH}^{\mathrm{-}}] + \mathrm{K}_{1} [\mathrm{H}_{3}\text{IO}_{6}^{\mathrm{2-}}] + \mathrm{K}_{1}\mathrm{K}_{2} \\&&+ \mathrm{K}_{1}\mathrm{K}_{2}\mathrm{K}_{3} [\text{PPZ}]_{\mathrm{T}}\} \end{array} $$
(A6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PATTAR, V.P., MAGDUM, P.A., PATIL, D.G. et al. Thermodynamic, kinetic and mechanistic investigations of Piperazine oxidation by Diperiodatocuprate(III) complex in aqueous alkaline medium. J Chem Sci 128, 477–485 (2016). https://doi.org/10.1007/s12039-016-1044-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1044-x

Keywords

Navigation