Skip to main content
Log in

Nano-crystalline Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Nano-crystalline cerium oxide catalysts have been prepared by precipitation and evaluated for the total catalytic oxidation of naphthalene, which is a polycyclic aromatic hydrocarbon (PAH). Ceria synthesised by precipitation with urea was the most active catalyst for oxidation of naphthalene to carbon dioxide. The urea precipitated CeO2 demonstrated over 90% naphthalene conversion to carbon dioxide at 175°C (100 ppm naphthalene, GHSV=25,000 h−1), whilst ceria precipitated via a carbonate only gave 90% conversion at 275°C. Comparison with known high activity total oxidation catalysts, Mn2O3 and 0.5% Pt/γ-Al2O3, showed that the urea precipitated CeO2 was a more effective catalyst for naphthalene total oxidation. At temperatures below those required to achieve catalytic activity the adsorption capacity of urea precipitated ceria for naphthalene was considerably greater than any of the other catalysts examined. The high adsorption capacity of the material provides the advantage that it can be used as a combined catalyst and adsorbent to remove PAHs from waste streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Mastral and M.S. Callén, Environ. Sci. Technol. 34 (2000) 3051.

    Google Scholar 

  2. A.M. Mastral M.S. Callén T. García (1999) Environ. Sci. Technol. 33 3177 Occurrence Handle1:CAS:528:DyaK1MXkvF2qsL4%3D

    CAS  Google Scholar 

  3. X.-W. Zhang S.-C. Shen L.E. Yu S. Kawi K. Hidajat K.Y. Simon Ng (2003) Appl. Catal. A: Gen. 250 341 Occurrence Handle10.1016/S0926-860X(03)00412-5 Occurrence Handle1:CAS:528:DC%2BD3sXntVersb8%3D

    Article  CAS  Google Scholar 

  4. H.-I. Chen H.-Y. Chang (2005) Solid State Commun. 133 593 Occurrence Handle1:CAS:528:DC%2BD2MXhtVars7k%3D

    CAS  Google Scholar 

  5. A. Trovarelli M. Boaro E. Rocchini C. Leitenburg G. Dolcetti (2001) J. Alloys Compd. 323–324 584

    Google Scholar 

  6. A. Trovarelli (1996) Catal. Rev. Sci. Eng. 38 439 Occurrence Handle1:CAS:528:DyaK28XmsVCmsr8%3D

    CAS  Google Scholar 

  7. W. Liu and M. Flytzani-Stephanopoulos, J. Catal. 53 (1995) 304 H. Sakurai, A. Ueda, T. Kobayashi and M. Haruta, Chem. Commun. (1997) 271.

  8. C.H. Wang S.S. Lin (2004) Appl. Catal. A: Gen. 268 227 Occurrence Handle10.1016/j.apcata.2004.03.040 Occurrence Handle1:CAS:528:DC%2BD2cXks1Witb4%3D

    Article  CAS  Google Scholar 

  9. T. Garcia, B. Solsona, D. Cazorla-Amorós, Á.l Linares-Solano and S.H. Taylor, Appl. Catal. B: Environ., submitted.

  10. N.C. Wu E.W. Shi Y.Q. Zheng W.J. Li (2002) J. Am. Ceram. Soc. 85 2462 Occurrence Handle1:CAS:528:DC%2BD38XotVGnurs%3D

    CAS  Google Scholar 

  11. M. Hirano E. Kato (1996) J. Mater. Sci. Lett. 15 1249 Occurrence Handle10.1007/BF00274391 Occurrence Handle1:CAS:528:DyaK28Xks1Sitb4%3D

    Article  CAS  Google Scholar 

  12. T. Masui K. Fujiwara K.I. Machida G.Y. Adachi T. Sakata H. Mori (1997) Chem. Mater. 9 2197 Occurrence Handle10.1021/cm970359v Occurrence Handle1:CAS:528:DyaK2sXmtlWksr0%3D

    Article  CAS  Google Scholar 

  13. L. Yin Y. Wang G. Pang Y. Koltypin A. Gedanken (2002) J. Colloid Interf. Sci. 246 78 Occurrence Handle1:CAS:528:DC%2BD38XitVOnuw%3D%3D

    CAS  Google Scholar 

  14. H. Xu L. Gao H. Gu J. Guo D. Yan (2002) J. Am. Ceram. Soc. 85 139 Occurrence Handle1:CAS:528:DC%2BD38XmvVWrsA%3D%3D

    CAS  Google Scholar 

  15. X.D. Zhou W. Huebner H.U. Anderson (2002) Appl. Phys. Lett. 80 3814 Occurrence Handle1:CAS:528:DC%2BD38Xjsleku74%3D

    CAS  Google Scholar 

  16. E. Matijević W.P. Hsu (1987) J. Colloid Interf. Sci. 118 506

    Google Scholar 

  17. P.L. Chen I.W. Chen (1993) J. Am. Ceram. Soc. 76 1577 Occurrence Handle1:CAS:528:DyaK3sXksFCmsLY%3D

    CAS  Google Scholar 

  18. J.G. Li T. Ikegami Y. Wang T. Mori (2002) J. Am. Ceram. Soc. 85 2376 Occurrence Handle10.1111/j.1151-2916.2002.tb00493.x Occurrence Handle1:CAS:528:DC%2BD38XntFGnsrk%3D

    Article  CAS  Google Scholar 

  19. N. Uekawa, M. Ueta, Y.J. Wu and K. Kakegawa, Chem. Lett. (2002) 854.

  20. M. Yamashita K. Kameyama S. Yabe S. Yoshida Y. Fujishiro T. Kawai T. Sato (2002) J. Mater. Sci. 37 683 Occurrence Handle10.1023/A:1013819310041 Occurrence Handle1:CAS:528:DC%2BD38XitV2lt70%3D

    Article  CAS  Google Scholar 

  21. D. Andreeva R. Nedyalkova L. Ilieva M.V. Abrashev (2004) Appl. Catal. B: Environ. 52 157 Occurrence Handle10.1016/j.apcatb.2004.03.019 Occurrence Handle1:CAS:528:DC%2BD2cXmt1Wrsbo%3D

    Article  CAS  Google Scholar 

  22. H.C. Yao Y.F. Yu Yao (1984) J. Catal. 86 254 Occurrence Handle10.1016/0021-9517(84)90371-3 Occurrence Handle1:CAS:528:DyaL2cXht1Kiu7s%3D

    Article  CAS  Google Scholar 

  23. Q. Fu A. Weber M. Flytzani-Stephanopoulos (2001) Catal. Lett. 77 IssueID1–3 87 Occurrence Handle1:CAS:528:DC%2BD3MXptlKqtLo%3D

    CAS  Google Scholar 

  24. A.M. Mastral T. García M.S. Callén M.V. Navarro J. Galbán (2001) Environ. Sci. Technol. 35 2395 Occurrence Handle1:CAS:528:DC%2BD3MXjtFGrtbg%3D

    CAS  Google Scholar 

  25. G.A. Somorjai K. McCrea (2001) Appl. Catal. A: Gen. 222 3 Occurrence Handle10.1016/S0926-860X(01)00825-0 Occurrence Handle1:CAS:528:DC%2BD38XjvV2r

    Article  CAS  Google Scholar 

  26. A.K. Sinha K. Suzuki (2005) Angew. Chem.-Int. Ed. 44 271 Occurrence Handle1:CAS:528:DC%2BD2MXjsFSquw%3D%3D Occurrence Handle10.1002/anie.200461284

    Article  CAS  Google Scholar 

  27. J.L. Shie C.Y. Chang J.H. Chen W.T. Tsai Y.H. Chen C.S. Chiou C.F. Chang (2005) Appl. Catal. B: Environ. 58 291 Occurrence Handle10.1016/j.apcatb.2004.11.026 Occurrence Handle1:CAS:528:DC%2BD2MXktFygs7Y%3D

    Article  CAS  Google Scholar 

  28. J. Carno M. Berg S. Jaras (1996) Fuel 75 959 Occurrence Handle10.1016/0016-2361(96)00047-6

    Article  Google Scholar 

  29. A. Kalantar Neyestanaki L.-E. Lindfors T. Ollonqvist J. Vayrynen (2000) Appl. Catal. A: Gen. 196 233 Occurrence Handle10.1016/S0926-860X(99)00475-5 Occurrence Handle1:CAS:528:DC%2BD3cXhslSrs7k%3D

    Article  CAS  Google Scholar 

  30. A. Kalantar Neyestanaki L.-E. Lindfors (1998) Fuel 77 1727 Occurrence Handle10.1016/S0016-2361(98)00113-6

    Article  Google Scholar 

  31. F. Klingstedt A. Kalantar Neyestanaki L.-E. Lindfors T. Salmi T. Heikkilä E. Laine (2003) Appl. Catal. A: Gen. 239 229 Occurrence Handle10.1016/S0926-860X(02)00386-1 Occurrence Handle1:CAS:528:DC%2BD3sXms1enug%3D%3D

    Article  CAS  Google Scholar 

  32. M. Ferrandon E. Bjornbom (2001) J. Catal. 200 148 Occurrence Handle10.1006/jcat.2001.3185 Occurrence Handle1:CAS:528:DC%2BD3MXjtVGlsr8%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, T., Solsona, B. & Taylor, S.H. Nano-crystalline Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons. Catal Lett 105, 183–189 (2005). https://doi.org/10.1007/s10562-005-8689-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-8689-2

Keywords

Navigation