Skip to main content
Log in

Catalytic activity and properties of copper-doped ceria nanocatalyst for VOCs oxidation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, pure and copper-doped ceria (CuxCe1-xO2, x = 0, 0.1, 0.2, 0.3 and 0.4) nanoparticles were prepared using the organic additive- and template-free hydrothermal method, thermally treated and thoroughly characterized. The catalytic activity in the oxidation of volatile organic compounds was tested using benzene, toluene, ethylbenzene, and o-xylene gaseous mixture (BTEX). The obtained nanocatalysts consist of very small spherical particles with sizes between 12 and 8.4 nm. Even though the XPS results show that copper is incorporated into the ceria crystal lattice in amounts lower than nominal, a beneficial synergistic effect between copper and cerium species is visible in the overall properties of the prepared materials. The sample with 40 mol.% copper is particularly noteworthy representing a precedent in terms of the largest nominal doping amount without the occurrence of secondary phases achieved by hydrothermal synthesis, and exhibiting the best catalytic activity for all studied VOCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

All the data can be obtained directly from the authors.

References

  1. H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol. 5, 2649–2669 (2015). https://doi.org/10.1039/C4CY01733A

    Article  CAS  Google Scholar 

  2. C. He, Y. Yu, L. Yue, N. Qiao, J. Li, Q. Shen, W. Yu, J. Chen, Z. Hao, Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol. Appl. Catal. B: Environ. 147, 156–166 (2014). https://doi.org/10.1016/j.apcatb.2013.08.039

    Article  CAS  Google Scholar 

  3. A. Aranda, S. Agouram, J.M. López, A.M. Mastral, D.R. Sellick, B. Solsona, S.H. Taylor, T. García, Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene. Appl. Catal. B: Environ. 127, 77–88 (2012). https://doi.org/10.1016/j.apcatb.2012.07.033

    Article  CAS  Google Scholar 

  4. M. Mogensen, N.M. Sammes, G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 129, 63–94 (2000). https://doi.org/10.1016/S0167-2738(99)00318-5

    Article  CAS  Google Scholar 

  5. I.V. Zagaynov, S.V. Kutsev, Formation of mesoporous nanocrystalline ceria from cerium nitrate, acetate or acetylacetonate. Appl. Nanosci. 4, 339–345 (2014). https://doi.org/10.1007/s13204-013-0210-4

    Article  CAS  Google Scholar 

  6. Z. Ren, F. Peng, J. Li, X. Liang, B. Chen, Morphology-dependent properties of Cu/CeO2 catalysts for the water-gas shift reaction. Catalysts 7(2), 1–12 (2017). https://doi.org/10.3390/catal7020048

    Article  CAS  Google Scholar 

  7. R. Si, J. Raitano, N. Yi, L. Zhang, S.W. Chan, M. Flytzani-Stephanopoulos, Structure sensitivity of the low-temperature water-gas shift reaction on Cu–CeO2 catalysts. Catal. Today 180, 68–80 (2012). https://doi.org/10.1016/j.cattod.2011.09.008

    Article  CAS  Google Scholar 

  8. G. Kastrinaki, S. Lorentzou, A.G. Konstandopoulos, Soot oxidation kinetics of different ceria nanoparticle catalysts. Emiss. Control Sci. and Technol. 1, 247–253 (2015). https://doi.org/10.1007/s40825-015-0021-z

    Article  CAS  Google Scholar 

  9. P. Miceli, S. Bensaid, N. Russo, D. Fino, CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact. Nanoscale Res. Lett. 9(254), 1–10 (2014). https://doi.org/10.1186/1556-276x-9-254

    Article  CAS  Google Scholar 

  10. F. Lin, X. Wu, S. Liu, D. Weng, Y. Huang, Preparation of MnOx–CeO2–Al2O3 mixed oxides for NOx-assisted soot oxidation: Activity, structure and thermal stability. Chem. Eng. J. 226, 105–112 (2013). https://doi.org/10.1016/j.cej.2013.04.006

    Article  CAS  Google Scholar 

  11. S.C. Singhal, Solid oxide fuel cells. The Electrochemical Society Interface 16(4), 41–44 (2007)

    Article  CAS  Google Scholar 

  12. T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials. Chem Rev. 116, 5987–6041 (2016). https://doi.org/10.1021/acs.chemrev.5b00603

    Article  CAS  Google Scholar 

  13. L. Adijanto, A. Sampath, A.S. Yu, M. Cargnello, P. Fornasiero, R.J. Gorte, J.M. Vohs, Synthesis and stability of Pd@CeO2 core-shell catalyst films in solid oxide fuel cell anodes. ACS Catal. 3(8), 1801–1809 (2013). https://doi.org/10.1021/cs4004112

    Article  CAS  Google Scholar 

  14. U. Menon, H. Poelman, V. Bliznuk, V.V. Galvita, D. Poelman, G.B. Marin, Nature of the active sites for the total oxidation of toluene by CuO-CeO2/Al2O3. J. Catal. 295, 91–103 (2012). https://doi.org/10.1016/j.jcat.2012.07.026

    Article  CAS  Google Scholar 

  15. M. Melchionna, P. Fornasiero, The role of ceria-based nanostructured materials in energy applications. Mater. Today 17, 349–357 (2014). https://doi.org/10.1016/j.mattod.2014.05.005

    Article  CAS  Google Scholar 

  16. G. Ramakrishnan, K. Naveen, Emission and dynamic characteristics of three way catalytic converter by computational fluid dynamics. Int. J. Eng. Sci. 6(11), 3503–3510 (2016)

    Google Scholar 

  17. S. Liu, X. Wu, D. Weng, R. Ran, Ceria-based catalysts for soot oxidation: a review. J. Rare Earths 33(6), 567–590 (2015). https://doi.org/10.1016/S1002-0721(14)60457-9

    Article  CAS  Google Scholar 

  18. Q. Jin, Y. Shena, Rare earth ions (La, Nd, Sm, Gd, and Tm) regulate the catalytic performance of CeO2/Al2O3 for NH3-SCR of NO. J. Mater. Res. 32(12), 2439–2445 (2017). https://doi.org/10.1557/jmr.2017.125

    Article  CAS  Google Scholar 

  19. L. Xue, H. He, C. Liu, C. Zhang, B. Zhang, Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt#cerium composite oxide catalysts for NO decomposition. Environ. Sci. Technol. 43(3), 890–895 (2009). https://doi.org/10.1021/es801867y

    Article  CAS  Google Scholar 

  20. B. Han, H. Li, L. Li, Y. Wang, Y. Zhang, G. Li, Kinetic control of CeO2 nanoparticles for catalytic CO oxidation. J. Mater. Res. 34(13), 2201–2208 (2019). https://doi.org/10.1557/jmr.2018.456

    Article  CAS  Google Scholar 

  21. Y. Zhang, T. Cheng, Q. Hu, Z. Fang, K. Han, Study of the preparation and properties of CeO2 single/multiwall hollow microspheres. J. Mater. Res. 22(6), 1472–1478 (2007). https://doi.org/10.1557/JMR.2007.0187

    Article  CAS  Google Scholar 

  22. D. Zhang, Y. Qian, L. Shi, H. Mai, R. Gao, J. Zhang, W. Yu, W. Cao, Cu-doped CeO2 spheres: Synthesis, characterization, and catalytic activity. Catal. Commun. 26, 164–168 (2012). https://doi.org/10.1016/j.catcom.2012.05.001

    Article  CAS  Google Scholar 

  23. F. Yang, J. Wei, W. Liu, J. Guo, Y. Yang, Copper doped ceria nanospheres: surface defects promoted catalytic activity and a versatile approach. J. Mater. Chem. A 2, 5662–5667 (2014). https://doi.org/10.1039/C3TA15253G

    Article  CAS  Google Scholar 

  24. K. Pemartin-Biernath, A.V. Vela-González, M.B. Moreno-Trejo, C. Leyva-Porras, I.E. Castañeda-Reyna, I. Juárez-Ramírez, C. Solans, M. Sánchez-Domínguez, Synthesis of mixed Cu/Ce oxide nanoparticles by the oil-in-water microemulsion reaction method. Materials 9(6), 480 (2016). https://doi.org/10.3390/ma9060480

    Article  CAS  Google Scholar 

  25. B.-Y. Wang, E.-D. Li, Y.-C. Zong, X.-B. Wang, J. Yuan, F.-Q. Zhang, Fabricating hollow, multishell CeO2 microspheres for enhanced photocatalytic degradation of RhB under visible light. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00513-5

    Article  Google Scholar 

  26. L. Zou, X. Shen, Q. Wang, Z. Wang, X. Yang, M. Jing, Improvement of catalytic activity and mechanistic analysis of transition metal ion doped nanoCeO2 by aqueous Rhodamine B degradation. J. Mater. Res. 30(18), 2763–2771 (2015). https://doi.org/10.1557/jmr.2015.263

    Article  CAS  Google Scholar 

  27. Y. Tan, S. Zhang, K. Liang, Photocurrent response and semiconductor characteristics of Ce-Ce2O3-CeO2-modified TiO2 nanotube arrays. Nanoscale Res. Lett. 9, 1–6 (2014). https://doi.org/10.1186/1556-276X-9-67

    Article  CAS  Google Scholar 

  28. E. Kumar, P. Selvarajana, D. Muthuraj, Synthesis and characterization of CeO2 nanocrystals by solvothermal route. Mater. Res. 16, 269–276 (2013). https://doi.org/10.1590/S1516-14392013005000021

    Article  CAS  Google Scholar 

  29. M. Duplančić, S. Kurajica, V. Tomašić, I. Minga, Catalytic oxidation of toluene on hydrothermally prepared ceria nanocrystals. Chem. Biochem. Eng. Q 31(4), 375–383 (2017). https://doi.org/10.15255/CABEQ.2017.1098

    Article  Google Scholar 

  30. S. Kurajica, K. Mužina, G. Dražić, G. Matijašić, M. Duplančić, V. Mandić, M. Župančić, I.K. Munda, A comparative study of hydrothermally derived Mn, Fe Co, Ni, Cu and Zn doped ceria nanocatalysts. Mater. Chem. Phys. 244, 1–9 (2020). https://doi.org/10.1016/j.matchemphys.2020.122689

    Article  CAS  Google Scholar 

  31. S. Kurajica, I. Minga, M. Guliš, V. Mandić, I. Simčić, High surface area ceria nanoparticles via hydrothermal synthesis experimental design. J. Nanomater. 7274949, 1–8 (2016). https://doi.org/10.1155/2016/7274949

    Article  CAS  Google Scholar 

  32. M. Hosseinpour, S.J. Ahmadi, T. Mousavand, M. Outokesh, Production of granulated-copper oxide nanoparticles for catalytic application. J. Mater. Res. 25(10), 2025–2034 (2010). https://doi.org/10.1557/JMR.2010.0262

    Article  CAS  Google Scholar 

  33. K. Mužina, S. Kurajica, G. Dražić, P. Guggenberger, G. Matijašić, True doping levels in hydrothermally derived copper-doped ceria. J. Nanopart. Res. 23(149), 1–14 (2021). https://doi.org/10.1007/s11051-021-05274-6

    Article  CAS  Google Scholar 

  34. C. Sun, H. Li, L. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 5, 8475–8505 (2012). https://doi.org/10.1039/C2EE22310D

    Article  CAS  Google Scholar 

  35. X. Yao, X. Yang, R. Yu, P. Xu, J. Chen, X. Xing, Controlled synthesis and properties of porous Cu/CeO2 microspheres. Mater. Res. Bull. 61, 22–25 (2015). https://doi.org/10.1016/j.materresbull.2014.09.083

    Article  CAS  Google Scholar 

  36. D.E.P. Vanpoucke, P. Bultinck, S. Cottenier, V. Van Speybroeck, I. Van Driessche, Aliovalent Doping of CeO2: DFT study of oxidation state and vacancy effects. J. Mater. Chem. A 2(33), 13723–13737 (2014). https://doi.org/10.1039/C4TA02449D

    Article  CAS  Google Scholar 

  37. P.P. Du, W.W. Wang, C.J. Jia, Q.S. Song, Y.Y. Huang, R. Si, (2016) Effect of strongly bound copper species in copper–ceria catalyst for preferential oxidation of carbon monoxide. Appl. Catal. A-Gen. 518, 87–101 (2016). https://doi.org/10.1016/j.apcata.2015.10.041

    Article  CAS  Google Scholar 

  38. A.A. Ansari, J. Labis, M. Alam, S.M. Ramay, N. Ahmad, A. Mahmood, Influence of copper ion doping on structural, optical and redox properties of CeO2 nanoparticles. J. Electroceram. 36, 150–157 (2016). https://doi.org/10.1007/s10832-016-0018-1

    Article  CAS  Google Scholar 

  39. M. Ghosh, D. Karmakar, S. Basu, S.N. Jha, D. Bhattacharyya, S.C. Gadkari, S.K. Gupta, Effect of size and aspect ratio on structural parameters and evidence of shape transition in zinc oxide nanostructures. J. Phys. Chem. Solids 75, 543–549 (2014). https://doi.org/10.1016/j.jpcs.2013.11.007

    Article  CAS  Google Scholar 

  40. C. Pan, D. Zhang, L. Shi, CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods. J. Solid State Chem. 181, 1298–1306 (2008). https://doi.org/10.1016/j.jssc.2008.02.011

    Article  CAS  Google Scholar 

  41. S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin, Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles. Cryst. Growth Des. 7(5), 950–955 (2007). https://doi.org/10.1021/cg0608864

    Article  CAS  Google Scholar 

  42. L. Yang, L. Li, M. Zhao, C. Fu, G. Li, Is there lattice contraction in multicomponent metal oxides? Case study for GdVO4:Eu3+ nanoparticles. Nanotechnology 24(305701), 1–10 (2013). https://doi.org/10.1088/0957-4484/24/30/305701

    Article  CAS  Google Scholar 

  43. W. Liu, M. Flytzani-Stephanopoulos, Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over Cu-CeO2. Chem. Eng. J. Biochem. Eng J. 64(2), 283–294 (1996). https://doi.org/10.1006/jcat.1995.1132

    Article  CAS  Google Scholar 

  44. S. Tiwari, G. Rathore, N. Patra, A.K. Yadav, D. Bhattacharaya, S.N. Jah, C.M. Tseng, S.W. Liu, S. Biring, S. Sen, Oxygen and cerium defects mediated changes in structural, optical and photoluminescence properties of Ni substituted CeO2. J. Alloy Compd. 782, 689–698 (2019). https://doi.org/10.1016/j.jallcom.2018.12.009

    Article  CAS  Google Scholar 

  45. X. Wang, J.A. Rodriguez, J.C. Hanson, D. Gamarra, A. Martinez-Arias, M. Fernandez-Garcia, Unusual physical and chemical properties of Cu in Ce1-xCuxO2 oxides. J. Phys. Chem. B 109, 19595–21960 (2005). https://doi.org/10.1021/jp051970h

    Article  CAS  Google Scholar 

  46. F.J. Sotomayor, K.A. Cychosz, M. Thommes, Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Acc. Mater. Surf. Res. 3(2), 34–50 (2018)

    Google Scholar 

  47. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  48. Ł Zych, A.M. Osyczka, A. Łacz, A. Rózycka, W. Niemiec, A. Rapacz-Kmita, E. Dzierzkowska, E. Stodolak-Zych, How surface properties of silica nanoparticles influence structural, microstructural and biological properties of polymer nanocomposites. Materials 14(843), 1–17 (2021). https://doi.org/10.3390/ma14040843

    Article  CAS  Google Scholar 

  49. P. Venkataswamy, K.N. Rao, D. Jampaiah, B.M. Reddy, Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures. Appl. Catal. B: Environ. 162, 122–132 (2015). https://doi.org/10.1016/j.apcatb.2014.06.038

    Article  CAS  Google Scholar 

  50. E. Moretti, M. Lenarda, P. Riello, L. Storaro, A. Talon, R. Frattini, A. Reyes-Carmona, A. Jiménez-López, E. Rodríguez-Castellón, Influence of synthesis parameters on the performance of CeO2–CuO and CeO2–ZrO2–CuO systems in the catalytic oxidation of CO in excess of hydrogen. Appl. Catal. B: Environ. 129, 556–565 (2013). https://doi.org/10.1016/j.apcatb.2012.10.009

    Article  CAS  Google Scholar 

  51. L.K. Dhandole, S.-G. Kim, Y.-S. Seo, M.A. Mahadik, H.S. Chung, S.Y. Lee, S.H. Choi, M. Cho, J. Ryu, J.S. Jang, Enhanced photocatalytic degradation of organic pollutants and inactivation of listeria monocytogenes by visible light active Rh−Sb codoped TiO2 nanorods. ACS Sustain. Chem. 6, 4302–4315 (2018). https://doi.org/10.1021/acssuschemeng.7b04764

    Article  CAS  Google Scholar 

  52. Y. Gao, K. Xie, W. Wang, S. Mi, N. Liu, G. Pan, W. Huang, Structural features and catalytic performance in CO preferential oxidation of CuO–CeO2 supported on multi-walled carbon nanotubes. Catal. Sci. Technol. 5, 1568–1579 (2015). https://doi.org/10.1039/C4CY01220H

    Article  CAS  Google Scholar 

  53. X. Garcia, L. Soler, N.J. Divins, X. Vendrell, I. Serrano, I. Lucentini, J. Prat, E. Solano, M. Tallarida, C. Escudero, J. Llorca, Ceria-based catalysts studied by near ambient pressure X-ray photoelectron spectroscopy: a review. Catalysts 10(286), 1–48 (2020). https://doi.org/10.3390/catal10030286

    Article  CAS  Google Scholar 

  54. Y. Tu, S. Chen, X. Li, J. Gorbaciova, W.P. Gillin, S. Krause, J. Briscoe, Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour. J. Mater. Chem. C 6, 1815–1821 (2018). https://doi.org/10.1039/C7TC04284A

    Article  CAS  Google Scholar 

  55. Q. Fu, A. Weber, M. Flytzani-Stephanopoulos, Nanostructured Au–CeO2 catalysts for low-temperature water–gas shift. Catal. Lett. 77(1–3), 87–95 (2001). https://doi.org/10.1023/A:1012666128812

    Article  CAS  Google Scholar 

  56. H. Yen, Y. Seo, S. Kaliaguine, F. Kleitz, Tailored mesostructured copper/ceria catalysts with enhanced performance for preferential Oxidation of CO at low temperature. Angew. Chem Int. Ed. 51, 12032–12035 (2012). https://doi.org/10.1002/anie.201206505

    Article  CAS  Google Scholar 

  57. C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao, Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem. Rev. 119(7), 4471–4568 (2019). https://doi.org/10.1021/acs.chemrev.8b00408

    Article  CAS  Google Scholar 

  58. G. Zhou, H. Lan, R. Song, H. Xie, Effects of preparation method on CeCu oxide catalyst performance. RSC Adv. 4, 50840–50850 (2014). https://doi.org/10.1039/C4RA05431H

    Article  CAS  Google Scholar 

  59. J. Brunet, E. Genty, Y. Landkocz, M. Al Zallouha, S. Billet, D. Courcot, S. Siffert, D. Thomas, G. De Weireld, R. Cousin, Identification of by-products issued from the catalytic oxidation of toluene by chemical and biological methods. C. R. Chimie 18, 1084–1093 (2015). https://doi.org/10.1016/j.crci.2015.09.001

    Article  CAS  Google Scholar 

  60. R. Dziembaj, M. Molenda, L. Chmielarz, M.M. Zaitz, Z. Piwowarska, A. Rafalska-Łasocha, Optimization of Cu doped ceria nanoparticles as catalysts for low-temperature methanol and ethylene total oxidation. Catal. Today 169, 112–117 (2011). https://doi.org/10.1016/j.cattod.2010.11.061

    Article  CAS  Google Scholar 

  61. S. Gheorghiu, M.-O. Coppens, Optimal bimodal pore networks for heterogeneous catalysis. AIChE J. 50(4), 812–820 (2004). https://doi.org/10.1002/aic.10076

    Article  CAS  Google Scholar 

  62. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures, 2nd edn. (John Wiley & Sons Inc., New York, 1974), pp. 687–703

    Google Scholar 

  63. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to imageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

Download references

Funding

This work has been fully supported by Croatian Science Foundation under the project IP-01–2018-2963. The sustenance of the University of Zagreb and University of Vienna is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina Mužina.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mužina, K., Kurajica, S., Guggenberger, P. et al. Catalytic activity and properties of copper-doped ceria nanocatalyst for VOCs oxidation. Journal of Materials Research 37, 1929–1940 (2022). https://doi.org/10.1557/s43578-022-00606-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00606-1

Keywords

Navigation