Skip to main content

Advertisement

Log in

Living donor bone banking: processing and discarding—from procurement to therapeutic use

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Skeletal muscle and osteoarticular tissue banks are responsible to procure, process, store and distribute tissues, from living and cadaveric donors. The procedures involve the application of protocols covering all aspects of the banking, ensuring the best tissue quality and maximum safety for the recipient. An analysis on the causes of bone tissue discarded by Biotar Tissue Bank between January 2005 and December 2012 was carried. Bone tissue was obtained from both hip and knee replacement (femoral heads and tibial plateau respectively) in living donors treated at different medical–surgical institutions in Argentina. These tissues were processed at the Bank to produce both frozen and lyophilized cancellous bone. Out of 3413 donated bones received by the Bank, 77.55 % resulted in final product, while the remaining 22.44 % was discarded in compliance with the quality standards of both the Bank and the regulatory authority. Comparing the last and the first year of the studied period, the number of discarded tissue increased 3.6 times, while the number of collected bones was approximately 10 times higher. Related to total disposed tissue, reactive serology was the most frequent cause (62.14 %), followed by inappropriate collection/storage of blood sample (30.81 %). A progressive reduction in the percentages of total discard was observed, and this was proportional to inappropriate collection/storage of blood sample. No significant differences were found in the discard rates due to positive serology throughout all the years studied. The success of a tissue bank requires full commitment of all the personnel especially the team members responsible for donor selection and the processing of allografts. It is important to critically screen donors in the early stages of donor recruitment. All of the procedures carried out by the tissue bank are parts of the quality control system which must be strictly carried out. Biotar Tissue Bank is continuously committed to ensure safety to the recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas G, Bali SL, Abbas N, Dalt DJ (2007) Demand and supply of bone allograft and the role of orthopaedic surgeons. Acta Orthop Belg 73:507–511

    PubMed  Google Scholar 

  • Aho AJ, Hirn M, Aro HT et al (1998) Bone bank service in Finland: experience of bacteriologic, serologic and clinical results of the Turku Bone Bank 1972–1995. Acta Orthop Scand 69:559–565

    Article  CAS  PubMed  Google Scholar 

  • Aponte-Tinao LA, Ritacco LE, Albergo JI et al (2014) The principles and applications of fresh frozen allografts to bone and joint reconstruction. Orthop Clin N Am 45(2):257–269

    Article  Google Scholar 

  • Aro HT, Aho AJ (1993) Clinical use of bone allografts. Ann Med 25:403–412

    Article  CAS  PubMed  Google Scholar 

  • Arrington ED, Smith WJ, Chambers HG et al (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 329:300–309

    Article  PubMed  Google Scholar 

  • Asselmeier MA, Caspari RB, Bottenfield S (1993) A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus. Am J Sports Med 21:170–175

    Article  CAS  PubMed  Google Scholar 

  • Ayerza MA, Aponte-Tinao LA, Farfalli GL et al (2009) Joint preservation after extensive curettage of knee giant cell tumors. Clin Orthop Relat Res 467(11):2845–2851

    Article  PubMed Central  PubMed  Google Scholar 

  • Beckmann NA, Mueller S, Gondan M, Jaeger S, Reiner T, Bitsch RG (2015) Treatment of severe bone defects during revision total knee arthroplasty with structural allografts and porous metal cones—a systematic review. J Arthroplasty 30(2):249–253

    Article  PubMed  Google Scholar 

  • Biglione M, Berini C (2013) Aportes y consideraciones sobre la infección por los virus linfotrópicos T humanos tipo 1 y 2 en Argentina. Rev Argent Salud Pública 4(14):32–37

    Google Scholar 

  • Buck BE, Malinin TI (1994) Human bone and tissue allografts: preparation and safety. Clin Orthop Relat Res 303:8–17

    PubMed  Google Scholar 

  • Buck BE, Malinin TI, Brown MD (1989) Bone transplantation and human immunodeficiency virus: an estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res 240:129–136

    PubMed  Google Scholar 

  • Busch MP (2004) Should HBV DNA NAT replace HBsAg and/or anti-HBc screening of blood donors? Transfus Clin Biol 11(1):26–32

    Article  PubMed  Google Scholar 

  • Calvo R, Figueroa D, Díaz-LedezmaC, Vaisman A, Figueroa F (2011) Bone allografts and the functions of bone banks. Rev Med Chile 139:660–666

  • Cañadell J, Cornejo F (1987) Banco de hueso de la Clínica Universitaria de Navarra. Rev Med Univ Navarra 31:239–246

    PubMed  Google Scholar 

  • Conrad EU, Gretch DR, Obermeyer KR et al (1995) Transmission of the hepatitis-C virus by tissue transplantation. J Bone Joint Surg Am 77(2):214–224

    CAS  PubMed  Google Scholar 

  • Deijkers RLM, Bloem RM, Petit PLC et al (1997) Contamination of bone allografts analysis of incidence and predisposing factors. J Bone Joint Surg Br 79(1):161–166

    Article  CAS  PubMed  Google Scholar 

  • Faldini C, Chehrassan M, Miscione MT et al (2011) Single-level anterior cervical discectomy and interbody fusion using PEEK anatomical cervical cage and allograft bone. J Orthop Traumatol 12(4):201–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galban E, Benzaken AS (2007) Situación de la sífilis en 20 países de Latinoamerica y el Caribe: año 2006. J bras Doenças Sex Transm 19(3–4):166–172

    Google Scholar 

  • García Neumayer G (2012) Prevalencia de infecciones transmisibles por transfusión en donantes de sangre de dos instituciones de la ciudad de Rosario. Universidad Abierta Interamericana. Sede Regional Rosario. Facultad de Medicina y Ciencias de la Salud

  • Humar A, Morris M, Blumberg E et al (2010) Nucleic acid testing (NAT) of organ donors: is the ‘best’ test the right test? A consensus conference report. Am J Transplant 10:889–899

    Article  CAS  PubMed  Google Scholar 

  • Journeaux SF, Johnson N, Bryce SL et al (1999) Bacterial contamination rates during bone allograft retrieval. J Arthroplasty 14(6):677–681

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Wang SI, Choi HR et al (2011) Unicondylar osteoarticular allograft reconstruction of the distal femur in a patient with a traumatic osteoaticular defect of the lateral femoral condyle. Knee Surg Sports Traumatol Arthrosc 19(4):556–558

    Article  PubMed  Google Scholar 

  • Mascola L, Kubak B, Radhakrishna S, Mone T, Hunter R, Leiby DA, Kuehnert M, Moore A, Steurer F, Lawrence G, Kun H (2006) Chagas disease after organ transplantation. MMWR 55(29):798–800

    Google Scholar 

  • Mendicino D, Streiger M, Nepote M et al (2013) Enfermedad de chagas en Santa Fe: situación actual y nuevos desafíos. Comunicaciones del Museo Provincial de Ciencias Naturales “Florentino Ameghino” 17(1):1–23

  • Muscolo DL, Ayerza MA, Aponte-Tinao LA (2006) Massive allograft use in orthopedic oncology. Orthop Clin N Am 37(1):65–74

    Article  Google Scholar 

  • Muscolo DL, Ayerza MA, Aponte-Tinao L, Farfalli G (2008) Allograft reconstruction after sarcoma resection in children younger than 10 years old. Clin Orthop Relat Res 466(8):1856–1862

    Article  PubMed Central  PubMed  Google Scholar 

  • Nather A, David V (2007) Femoral head banking: NUH tissue bank experience. Orthopedics 30:308–312

    PubMed  Google Scholar 

  • Palmer SH, Gibbons CLMH, Athanasou NA (1999) The pathology of bone allograft. J Bone Joint Surg Br 81(2):333–335

    Article  CAS  PubMed  Google Scholar 

  • Raimondo G, Pollicino T, Cacciola I, Squadrito G (2007) Occult hepatitis B virus infection. J Hepatol 46(1):160–170

    Article  PubMed  Google Scholar 

  • Raz G, Safir OA, Backstein DJ, Lee PT, Gross AE (2014) Distal femoral fresh osteochondral allografts: follow-up at a mean of twenty-two years. J Bone Joint Surg 96(13):1101–1107

    Article  PubMed  Google Scholar 

  • Regis D, Sandri A, Bonetti I et al (2012) A minimum of 10-year follow-up of the Burch–Schneider cage and bulk allografts for the revision of pelvic discontinuity. Arthroplasty 27(6):1057–1063

    Article  Google Scholar 

  • Romaña C (1961) Epidemiología y distribución geográfica de la enfermedad de Chagas. Bol Oficina Sanit Panam 51:390–403

    PubMed  Google Scholar 

  • Sakellariou VI, Babis GC (2014) Management bone loss of the proximal femur in revision hip arthroplasty: update on reconstructive options. World J Orthop 5(5):614–622

    Article  PubMed Central  PubMed  Google Scholar 

  • Seiler JG 3rd, Johnson J (1999) Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9(2):91–97

    Google Scholar 

  • Simonds RJ (1993) HIV transmission by organ and tissue transplantation. Aids 7:S35–S38

    Article  PubMed  Google Scholar 

  • Simonds RJ, Holmberg SD, Hurwitz RL et al (1992) Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med 326(11):726–732

    Article  CAS  PubMed  Google Scholar 

  • Sninsky JJ, Kwok S (1993) The application of quantitative polymerase chain reaction to therapeutic monitoring. Aids 7:S29–S34

    Article  PubMed  Google Scholar 

  • Sugihara S, Van Ginkel AD, Jiya TU et al (1999) Histopathology of retrieved allografts of the femoral head. J Bone Joint Surg Br 81(2):336–341

    Article  CAS  PubMed  Google Scholar 

  • Tomford WW (2000) Bone allografts: past, present and future. Cell Tissue Bank 1(2):105–109

    Article  PubMed  Google Scholar 

  • Tomford WW, Mankin HJ (1999) Bone banking: update on methods and materials. Orthop Clin N Am 30(4):565–570

    Article  CAS  Google Scholar 

  • Tugwell BD, Patel PR, Williams IT et al (2005) Transmission of hepatitis C virus to several organ and tissue recipients from an antibody-negative donor. Ann Intern Med 143(9):648–654

    Article  PubMed  Google Scholar 

  • Urrutia J, Molina M (2013) Fresh-frozen femoral head allograft as lumbar interbody graft material allows high fusion rate without subsidence. Orthop Traumatol Surg Res 99(4):413–418

    Article  CAS  PubMed  Google Scholar 

  • Veitch SW, Stroud RM, Toms AD (2010) Compaction bone grafting in tibial plateau fracture fixation. J Trauma 68(4):980–983

    Article  PubMed  Google Scholar 

  • Woll JE (2005) Tissue banking overview. Clin Lab Med 25:473–486

    Article  PubMed  Google Scholar 

  • Yao F, Seed C, Farrugia A et al (2007) The risk of HIV, HBV, HCV and HTLV infection among musculoskeletal tissue donors in Australia. Am J Transplant 7(12):2723–2726

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa A, Gotanda Y, Minegishi K et al (2007) Lengths of hepatitis B viremia and antigenemia in blood donors: preliminary evidence of occult (hepatitis B surface antigen–negative) infection in the acute stage. Transfusion 47(7):1162–1171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Lorenti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hovanyecz, P., Lorenti, A., Lucero, J.M.J. et al. Living donor bone banking: processing and discarding—from procurement to therapeutic use. Cell Tissue Bank 16, 593–603 (2015). https://doi.org/10.1007/s10561-015-9507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-015-9507-8

Keywords

Navigation