Skip to main content

Advertisement

Log in

BKCa Channel Activation Attenuates the Pathophysiological Progression of Monocrotaline-Induced Pulmonary Arterial Hypertension in Wistar Rats

  • Orignal Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

In the present study, the therapeutic efficacy of a selective BKCa channel opener (compound X) in the treatment of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) was investigated.

Methods

PAH was induced in male Wistar rats by a single injection of MCT. After two weeks, the MCT-treated group was divided into two groups that were either treated with compound X or vehicle. Compound X was administered daily at 28 mg/kg. Electrocardiographic, echocardiographic, and haemodynamic analyses were performed; ex vivo evaluations of pulmonary artery reactivity, right ventricle (RV) and lung histology as well as expression levels of α and β myosin heavy chain, brain natriuretic peptide, and cytokines (TNFα and IL10) in heart tissue were performed.

Results

Pulmonary artery rings of the PAH group showed a lower vasodilatation response to acetylcholine, suggesting endothelial dysfunction. Compound X promoted strong vasodilation in pulmonary artery rings of both control and MCT-induced PAH rats. The untreated hypertensive rats presented remodelling of pulmonary arterioles associated with increased resistance to pulmonary flow; increased systolic pressure, hypertrophy and fibrosis of the RV; prolongation of the QT and Tpeak-Tend intervals (evaluated during electrocardiogram); increased lung and liver weights; and autonomic imbalance with predominance of sympathetic activity. On the other hand, treatment with compound X reduced pulmonary vascular remodelling, pulmonary flow resistance and RV hypertrophy and afterload.

Conclusion

The use of a selective and potent opener to activate the BKCa channels promoted improvement of haemodynamic parameters and consequent prevention of RV maladaptive remodelling in rats with MCT-induced PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

No, some restrictions will apply.

Abbreviations

ACh:

Acetylcholine

ANOVA:

Analysis of Variance

BKCa:

Calcium- and voltage-sensitive potassium channel

BKa:

BKCa channel Opener

BNP:

Brain natriuretic peptide

DAP:

Diastolic arterial pressure

ECG:

Electrocardiogram

ELISA:

Enzyme-linked immunosorbent assay

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HF:

Power density of high frequency

HRV:

Heart rate variability

IL10:

Interleukin-10

LF:

Power density of low frequency

MAP:

Mean arterial pressure

MCT:

Monocrotaline

MHC:

Myosin heavy chain

PAH:

Pulmonary arterial hypertension

PAT:

Pulmonary artery acceleration time

PET:

Pulmonary ejection time

Phe:

Phenylephrine

QTc:

Corrected QT interval

RR:

Time interval between two consecutive R waves

RV:

Right ventricle

RVSP:

RV systolic pressure

RVW:

Right ventricle weight

SAP:

Systolic arterial pressure

SEM:

Standard error of the mean

TNFα:

Tumour necrosis factor-α

Tpeak-Tend:

Time interval between peak and the end of T wave

VSMC:

Vascular smooth muscle cells

VTI:

Velocity–time integral

References

  1. Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. Turk Kardiyol Dern Ars. 2014;42(Suppl 1):45–54.

    PubMed  Google Scholar 

  2. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol. 2011;8:443–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Galiè N, Humbert M, Vachiéry J-L, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2015;37:67–119.

    PubMed  Google Scholar 

  4. Humbert M, Sitbon O, Chaouat A, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010;122:156–63.

    PubMed  Google Scholar 

  5. Petitpretz P, Brenot F, Azarian R, et al. Pulmonary hypertension in patients with human immunodeficiency virus infection. Comparison with primary pulmonary hypertension. Circulation. 1994;89:2722–7.

    CAS  PubMed  Google Scholar 

  6. Vang A, Mazer J, Casserly B, Choudhary G. Activation of endothelial BKCa channels causes pulmonary vasodilation. Vasc Pharmacol. 2010;53:122–9.

    CAS  Google Scholar 

  7. Rothberg BS, Magleby KL. Voltage and Ca2+ activation of single large-conductance Ca2+−activated K+ channels described by a two-tiered allosteric gating mechanism. J Gen Physiol. 2000;116:75–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng Y-M, Park SW, Stokes L, Tang Q, Xiao J-H, Wang Y-X. Distinct activity of BK channel β 1 -subunit in cerebral and pulmonary artery smooth muscle cells. Am J Physiol Physiol. 2013;304:C780–9.

    CAS  Google Scholar 

  9. Resnik E, Herron J, Fu R, Ivy DD, Cornfield DN. Oxygen tension modulates the expression of pulmonary vascular BK Ca channel α- and β-subunits. Am J Physiol Cell Mol Physiol. 2006;290:L761–8.

    CAS  Google Scholar 

  10. Yang Y, Li PY, Cheng J, et al. Function of BKCa channels is reduced in human vascular smooth muscle cells from han chinese patients with hypertension. Hypertension. 2013;61:519–25.

    CAS  PubMed  Google Scholar 

  11. Archer SL, Huang JMC, Reeve HL, et al. Differential distribution of Electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ Res. 1996;78:431–42.

    CAS  PubMed  Google Scholar 

  12. Peinado VI, París R, Ramírez J, Roca J, Rodriguez-Roisin R, Barberà JA. Expression of BKCa channels in human pulmonary arteries: relationship with remodeling and hypoxic pulmonary vasoconstriction. Vasc Pharmacol. 2008;49:178–84.

    CAS  Google Scholar 

  13. Bonnet S, Dumas-de-La-Roque E, Bégueret H, Marthan R, Fayon M, Dos Santos P, et al. Dehydroepiandrosterone (DHEA) prevents and reverses chronic hypoxic pulmonary hypertension. PNAS. 2003;100:9488–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Boucherat O, Chabot S, Antigny F, Perros F, Provencher S, Bonnet S. Potassium channels in pulmonary arterial hypertension. Eur Respir J. 2015;46:1167–77.

    CAS  PubMed  Google Scholar 

  15. Kroigaard C, Dalsgaard T, Nielsen G, et al. Activation of endothelial and epithelial KCa2.3 calcium-activated potassium channels by NS309 relaxes human small pulmonary arteries and bronchioles. Br J Pharmacol. 2012;167:37–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Revermann M, Neofitidou S, Kirschning T, Schloss M, Brandes RP, Hofstetter C. Inhalation of the BKCa-opener NS1619 attenuates right ventricular pressure and improves oxygenation in the rat Monocrotaline model of pulmonary hypertension. PLoS One. 2014;9:e86636.

    PubMed  PubMed Central  Google Scholar 

  17. Bukiya AN, Vaithianathan T, Toro L, Dopico AM. Channel β2–4 subunits fail to substitute for β1 in sensitizing BK channels to lithocholate. Biochem Biophys Res Commun. 2009;390:995–1000.

    CAS  PubMed  Google Scholar 

  18. Bukiya AN, Liu J, Toro L, Dopico AM. Beta1 (KCNMB1) subunits mediate lithocholate activation of large-conductance Ca2+−activated K+ channels and dilation in small, resistance-size arteries. Mol Pharmacol. 2007;72:359–69.

    CAS  PubMed  Google Scholar 

  19. Gore VK, Ma VV, Yin R, et al. Structure–activity elationship (SAR) investigations of tetrahydroquinolines as BKCa agonists. Bioorg Med Chem Lett. 2010;20:3573–8.

    CAS  PubMed  Google Scholar 

  20. Nardi A, Olesen S-P. BK Channel modulators: a comprehensive overview. Curr Med Chem. 2008;15:1126–46.

    CAS  PubMed  Google Scholar 

  21. Nardi A, Calderone V. Olesen S-. Potassium Channel openers: the case of BK Channel activators. Lett Drug Des Discov. 2006;3:210–8.

    CAS  Google Scholar 

  22. Garcia ML, Shen D-M, Kaczorowski GJ. High-conductance calcium-activated potassium channels. Expert Opin Ther Pat. 2007;17:831–42.

    CAS  Google Scholar 

  23. Ponte CG, McManus OB, Schmalhofer WA, et al. Selective, direct activation of high-conductance, calcium-activated potassium channels causes smooth muscle relaxation. Mol Pharmacol. 2012;81:567–77.

    CAS  PubMed  Google Scholar 

  24. Gomez-Arroyo JG, Farkas L, Alhussaini AA, et al. The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol. 2012;302:L363–9.

    CAS  PubMed  Google Scholar 

  25. Alencar AKN, Pereira SL, Silva FE, Mendes LVP, Cunha VMN, Lima LM, et al. N-acylhydrazone derivative ameliorates monocrotaline-induced pulmonary hypertension through the modulation of adenosine AA2R activity. Int J Cardiol. 2014;173:154–62.

    PubMed  Google Scholar 

  26. Provencher S, Archer SL, Ramirez FD, Hibbert B, Paulin R, Boucherat O, et al. Standards and methodological rigor in pulmonary arterial hypertension preclinical and translational research. Circ Res. 2018;122:1021–32.

    CAS  PubMed  Google Scholar 

  27. Pereira-Junior P, Chaves E, Costa-e-Sousa RH, Masuda MO, Campos de Carvalho A, JHM N. Cardiac autonomic dysfunction in rats chronically treated with anabolic steroid. Eur J Appl Physiol. 2006;96:487–94.

    CAS  PubMed  Google Scholar 

  28. Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-aho PO, Karjalainen PA. Kubios HRV - heart rate variability analysis software. Comput Methods Prog Biomed. 2014;113:210–20.

    Google Scholar 

  29. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.e14.

    PubMed  Google Scholar 

  30. Whittaker P, Kloner RA, Boughner DR, Pickering JG. Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol. 1994;89:397–410.

    CAS  PubMed  Google Scholar 

  31. Zuckerbraun BS, Shiva S, Ifedigbo E, et al. Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase- dependent nitric oxide generation. Circulation. 2010;121:98–109.

    CAS  PubMed  Google Scholar 

  32. Bradford MMM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    CAS  PubMed  Google Scholar 

  33. Rosenberg HC, Rabinovitch M. Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension. Am J Phys. 1988;255:H1484–91.

    CAS  Google Scholar 

  34. Bi D, Toyama K, Lemaître V, et al. The intermediate conductance calcium-activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium-dependent signaling. J Biol Chem. 2013;288:15843–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gáspár T, Katakam P, Snipes JA, et al. Delayed neuronal preconditioning by NS1619 is independent of calcium activated potassium channels. J Neurochem. 2008;105:1115–28.

    PubMed  Google Scholar 

  36. Park WS, Kang SH, Son YK, et al. The mitochondrial Ca2+−activated K+ channel activator, NS 1619 inhibits L-type Ca2+ channels in rat ventricular myocytes. Biochem Biophys Res Commun. 2007;362:31–6.

    CAS  PubMed  Google Scholar 

  37. Wrzosek A. The potassium channel opener NS1619 modulates calcium homeostasis in muscle cells by inhibiting SERCA. Cell Calcium. 2014;56:14–24.

    CAS  PubMed  Google Scholar 

  38. Stacher E, Graham BB, Hunt JM, et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186:261–72.

    PubMed  PubMed Central  Google Scholar 

  39. Wang Q, Zuo XR, Wang YY, Xie WP, Wang H, Zhang M. Monocrotaline-induced pulmonary arterial hypertension is attenuated by TNF-α antagonists via the suppression of TNF-α expression and NF-κB pathway in rats. Vasc Pharmacol. 2013;58:71–7.

    CAS  Google Scholar 

  40. Fujita M, Mason RJ, Cool C, Shannon JM, Hara N, Fagan KA. Pulmonary hypertension in TNF-α-overexpressing mice is associated with decreased VEGF gene expression. J Appl Physiol. 2015;93:2162–70.

    Google Scholar 

  41. Goldklang MP, Perez-Zoghbi JF, Trischler J, et al. Treatment of experimental asthma using a single small molecule with anti-inflammatory and BK channel-activating properties. FASEB J. 2013;27:4975–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Altiere RJ, Olson JW, Gillespie MN. Altered pulmonary vascular smooth muscle responsiveness in monocrotaline-induced pulmonary hypertension. J Pharmacol Exp Ther. 1986;236:390–5.

    CAS  PubMed  Google Scholar 

  43. Krishnan U. Diagnosis and management of primary pulmonary hypertension. Indian J Pediatr. 2000;67(3 Suppl):S41–5.

    CAS  PubMed  Google Scholar 

  44. Barman SA, Zhu S, Han G, White RE. cAMP activates BKCa channels in pulmonary arterial smooth muscle via cGMP-dependent protein kinase. Am J Physiol Cell Mol Physiol. 2003;284:L1004–11.

    CAS  Google Scholar 

  45. Erdei N, Papp Z, Pollesello P, Édes I, Bagi Z. The levosimendan metabolite OR-1896 elicits vasodilation by activating the K ATP and BK Ca channels in rat isolated arterioles. Br J Pharmacol. 2006;148:696–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pickkers P, Hughes AD, Russel FGM, Thien T, Smits P. In vivo evidence for KCa channel opening properties of acetazolamide in the human vasculature. Br J Pharmacol. 2001;132:443–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hercule HC, Salanova B, Essin K, et al. The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK α channel subunit in rodents. Exp Physiol. 2007;92:1067–76.

    CAS  PubMed  Google Scholar 

  48. Fukuda Y, Tanaka H, Sugiyama D, et al. Utility of right ventricular free wall speckle-tracking strain for evaluation of right ventricular performance in patients with pulmonary hypertension. J Am Soc Echocardiogr. 2011;24:1101–8.

    PubMed  Google Scholar 

  49. Eysmann SB, Palevsky HI, Reichek N, Hackney K, Douglas PS. Two-dimensional and Doppler-echocardiographic and cardiac catheterization correlates of survival in primary pulmonary hypertension. Circulation. 1989;80:353–60.

    CAS  PubMed  Google Scholar 

  50. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135:794–804.

    CAS  PubMed  Google Scholar 

  51. Stojnic BB, Brecker SJD, Xiao HB, Helmy SM, Mbaissouroum M, Gibson DG. Left ventricular filling characteristics in pulmonary hypertension: a new mode of ventricular interaction. Heart. 1992;68:16–20.

    CAS  Google Scholar 

  52. Potus F, Malenfant S, Graydon C, et al. Impaired angiogenesis and peripheral muscle microcirculation loss contribute to exercise intolerance in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2014;190:318–28.

    CAS  PubMed  Google Scholar 

  53. Miyamoto S, Nagaya N, Satoh T, et al. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension: comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2000;161:487–92.

    CAS  PubMed  Google Scholar 

  54. Wensel R, Jilek C, Dörr M, et al. Impaired cardiac autonomic control relates to disease severity in pulmonary hypertension. Eur Respir J. 2009;34:895–901.

    CAS  PubMed  Google Scholar 

  55. Ciarka A, Doan V, Velez-Roa S, Naeije R, Van De Borne P. Prognostic significance of sympathetic nervous system activation in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;181:1269–75.

    PubMed  Google Scholar 

  56. Velez-Roa S, Ciarka A, Najem B, Vachiery JL, Naeije R, Van De Borne P. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation. 2004;110:1308–12.

    PubMed  Google Scholar 

  57. Leineweber K, Seyfarth T, Brodde OE. Chamber-specific alterations of noradrenaline uptake (uptake1) in right ventricles of monocrotaline-treated rats. Br J Pharmacol. 2000;131:1438–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pachuau J, Li D-P, Chen S-R, Lee H-A, Pan H-L. Protein kinase CK2 contributes to diminished small conductance ca 2+ −activated K + channel activity of hypothalamic pre-sympathetic neurons in hypertension. J Neurochem. 2014;130:657–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gui L, LaGrange LP, Larson RA, Gu M, Zhu J, Chen Q-H. Role of small conductance calcium-activated potassium channels expressed in PVN in regulating sympathetic nerve activity and arterial blood pressure in rats. Am J Physiol Integr Comp Physiol. 2012;303:R301–10.

    CAS  Google Scholar 

  60. Marques-Neto SR, Ferraz EB, Rodrigues DC, Njaine B, Rondinelli E, De Carvalho ACC, et al. AT 1 and aldosterone receptors blockade prevents the chronic effect of nandrolone on the exercise-induced cardioprotection in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther. 2014;28(2):125–35.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Department of Science and Technology - Brazilian Ministry of Health (DECIT/SCTIE/MS), the Rio de Janeiro State Research Foundation (FAPERJ), the Brazilian Council for Scientific and Technological Development (CNPq) and the Coordination for the Improvement of Higher Education Personnel (CAPES). JHMN and ACCC are research fellows from CNPq and FAPERJ.

Author information

Authors and Affiliations

Authors

Contributions

APF, FACS, CGP, JHMN conception and design of research study; MTC and GOR synthesized and purified compound X; APF, EFB, FACS, TSB, TBBS, NSCS, AED, RAQB performed experiments; APF, FACS, TSB, RAQB, CMT, analysed the data; APF, FACS, CGP, CMT, ACCC, JHMN interpreted results of experiments; APF, FACS, CGP, JHMN wrote the manuscript; FACS, ACCC, JHMN revised manuscript; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jose Hamilton M. Nascimento.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics Approval

The study was conducted according to the “Guide for the Care and Use of Laboratory Animals” (NIH Publication No. 85–23, revised in 2010), and the experimental protocols were approved by the Ethics Committee on Animal Use of the Federal University of Rio de Janeiro (protocol 087/15).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. 1.

(a) The vasoconstrictive response of pulmonary artery to the α1-agonist phenylephrine (Phe) in CTL, MCT and MCT + BKa groups (all groups with n = 7). (b) The maximal relaxation elicited by ACh and BKa were compared in CTL (ACh, n = 5; BKa, n = 6), MCT (ACh, n = 5; BKa, n = 4) and MCT + BKa (ACh, n = 5; BKa, n = 5) groups. Data are expressed as mean ± SEM. *p < 0.05 versus CTL. (PNG 26 kb)

High resolution image (TIF 3795 kb)

Fig. 2.

Systemic blood pressure was not affected by BKCa channels activation. Systemic blood pressure was assessed by aortic cannulation in CTL (n = 14), MCT (n = 11) and MCT + BKa (n = 9) groups. Data are expressed as mean ± SEM. (PNG 21 kb)

High resolution image (TIF 3587 kb)

Fig. 3.

Survival analysis. Monocrotaline-injected rats from MCT + BKa group were daily treated with compound X from 14th to the 28th day. CTL (n = 15), MCT (n = 15), and MCT + BKa (n = 14). (PNG 9 kb)

High resolution image (TIF 49023 kb)

Fig. 4.

Right ventricle and systemic hemodynamic properties were not affected by BKCa channels activation in health rats. CTL group (n = 5); MCT group (n = 2–5). Data are expressed as mean ± SEM. (PNG 8 kb)

High resolution image (TIF 15594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraz, A.P., Seara, F.A.C., Baptista, E.F. et al. BKCa Channel Activation Attenuates the Pathophysiological Progression of Monocrotaline-Induced Pulmonary Arterial Hypertension in Wistar Rats. Cardiovasc Drugs Ther 35, 719–732 (2021). https://doi.org/10.1007/s10557-020-07115-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07115-5

Keywords

Navigation