Skip to main content
Log in

Cardioprotective Effects of Beta3-Adrenergic Receptor (β3-AR) Pre-, Per-, and Post-treatment in Ischemia–Reperfusion

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The β3-AR (beta3-adrenergic receptor) is resistant to short-term agonist-promoted desensitization and delivers a constant intracellular signal, making this receptor a potential target in acute myocardial infarction (AMI).

Aim

To investigate whether selective modulation of β3-AR prior to or during ischemia and/or reperfusion may be cardioprotective.

Methods

Isolated perfused rat hearts were exposed to 35-min regional ischemia (RI) and 60-min reperfusion. The β3-AR agonist (BRL37344, 1 μM) or antagonist (SR59230A, 0.1 μM) was applied: (i) before RI (PreT) or (ii) last 10 min of RI (PerT) or (iii) onset of reperfusion (PostT) or (iv) during both PerT+PostT. Nitric oxide (NO) involvement was assessed, using the NOS inhibitor, L-NAME (50 μM). Endpoints were functional recovery, infarct size (IS), cGMP levels, and Western blot analysis of eNOS, ERKp44/p42, PKB/Akt, and glycogen synthase kinase-3β (GSK-3β).

Results

Selective treatment with BRL significantly reduced IS. L-NAME abolished BRL-mediated cardioprotection. BRL (PreT) and BRL (PerT) significantly increased cGMP levels (which were reduced by L-NAME) and PKB/Akt phosphorylation. BRL (PostT) produced significantly increased cGMP levels, PKB/Akt, and ERKp44/p42 phosphorylation. BRL (PerT+PostT) caused significant eNOS, PKB/Akt, ERKp44/p42, and GSK-3β phosphorylation.

Conclusion

β3-AR activation by BRL37344 induced significant cardioprotection regardless of the experimental protocol. However, the pattern of intracellular signaling with each BRL treatment differed to some degree and suggests the involvement of cGMP, eNOS, ERK, GSK-3β, and particularly PKB/Akt activation. The data also suggest that clinical application of β3-AR stimulation should preferably be incorporated during late ischemia or/and early reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88(2):581–609.

    Article  CAS  PubMed  Google Scholar 

  2. Asimakis GK, Inners-McBride K, Conti VR, Yang C. Transient β adrenergic stimulation can precondition the rat heart against postischaemic contractile dysfunction. Cardiovasc Res. 1994;28(11):1726–34.

    Article  CAS  PubMed  Google Scholar 

  3. Salie R, Moolman JA, Lochner A. The role of β-adrenergic receptors in the cardioprotective effects of beta-preconditioning (βPC). Cardiovasc Drugs Ther. 2011;25(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  4. Aragón JP, Condit ME, Bhushan S, Predmore BL, Patel SS, Grinsfelder DB, et al. Beta3-Adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. J Am Coll Cardiol. 2011;58(25):2683–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Z, Ding L, Jin Z, Gao G, Li H, Zhang L, et al. Nebivolol protects against myocardial infarction injury via stimulation of beta 3-adrenergic receptors and nitric oxide signaling. PLoS One. 2014;9(5):e98179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moniotte S, Kobzik L, Feron O, Trochu JN, Gauthier C, Balligand JL. Upregulation of beta (3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation. 2001;103(12):1649–55.

    Article  CAS  PubMed  Google Scholar 

  7. Liggett SB, Freedman NJ, Schwinn DA, Lefkowitz RJ. Structural basis for receptor subtype-specific regulation revealed by a chimeric beta 3/ beta 2-adrenergic receptor. PNAS. 1993;90(8):3665–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gauthier C, Langin D, Balligand J. Βeta 3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci. 2000;21(11):426–31.

    Article  CAS  PubMed  Google Scholar 

  9. Dessy C, Balligand J. Beta 3-adrenergic receptors in cardiac and vascular tissues: Emerging Concepts and Therapeutic Perspectives. Adv Pharmacol. 2010;59:135–63.

    Article  CAS  PubMed  Google Scholar 

  10. Lafontan M. Differential recruitment and differential regulation by physiological amines of fat cell β-1, β-2 and β-3 adrenergic receptors expressed in native fat cells and in transfected cell lines. Cell Signal. 1994;6(4):363–92.

    Article  CAS  PubMed  Google Scholar 

  11. Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, et al. Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol. 2012;59(22):1979–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Granneman GJ. Why do adipocytes make the β3 adrenergic receptor? Cell Signal. 1995;7(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  13. Lochner A, Genade S, Tromp E, Podzuweit T, Moolman JA. Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation. 1999;100(9):958–66.

    Article  CAS  PubMed  Google Scholar 

  14. Mason RP, Jacob RF, Corbalan JJ, Szczesny D, Matysiak K, Malinski T. Favorable kinetics and balance of nebivolol-stimulated nitric oxide and peroxynitrite release in human endothelial cells. BMC Pharmacol Toxicol. 2013;14:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garcı’a-Prieto J, Garcı’a-Ruiz JM, Sanz-Rosa D, et al. B3 adrenergic receptor selective stimulation during ischemia/reperfusion improves cardiac function in translational models through inhibition of mPTP opening in cardiomyocytes. Basic Res Cardiol. 2014;109:422.

    Article  CAS  Google Scholar 

  16. Gauthier C, Tavernier G, Charpentier F, Langin D, le Marec H. Functional b3-adrenoceptor in the human heart. J Clin Invest. 1996;98(2):556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marais E, Ganade S, Salie R, Huisamen B, Maritz S, Moolman JA, et al. The temporal relationship between p38 MAPK and HSP27 activation in ischaemic and pharmacological preconditioning. Basic Res Cardiol. 2005;100(1):35–47.

    Article  CAS  PubMed  Google Scholar 

  18. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  19. Abdallah Y, Gkatzoflia A, Pieper H, Zoga E, Walther S, Kasseckert S, et al. Mechanism of cGMP-mediated protection in a cellular model of myocardial reperfusion injury. Cardiovasc Res. 2005;66(1):123–31.

    Article  CAS  PubMed  Google Scholar 

  20. Inserte J, Garcia-Dorado D. The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism. Br J Pharmacol. 2015;172(8):1996–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perrone MG and Scilimati A. Beta 3-Adrenoceptor agonists and (antagonists) inverse agonists: history, perspective, constitutive activity and stereospecific binding. Methods Enzymol. 2010; 484:197–230.

  22. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2004;286(1):H477.

    Article  CAS  Google Scholar 

  23. Bullard AJ, Govewalla P, Yellon DM. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol. 2005;100(5):397–403.

    Article  CAS  PubMed  Google Scholar 

  24. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. TCM. 2005;15(2):69–75.

    CAS  PubMed  Google Scholar 

  25. Nduhirabandi F, Huisamen B, Strijdom H, Blackhurst D, Lochner A. Short-term melatonin consumption protects the heart of obese rats independent of body weight change and visceral adiposity. J Pineal Res. 2014;57(3):317–32.

    Article  CAS  PubMed  Google Scholar 

  26. Webster I, Smith A, Lochner A, Huisamen B. The role of MKP-1 in insulin-induced cardioprotection. Cardiovasc Drugs Ther. 2017;31(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  27. Salie R, Moolman JA, Lochner A. The mechanism of beta-adrenergic preconditioning: roles for adenosine and ROS during triggering and mediation. Basic Res Cardiol. 2012;107(5):281.

    Article  CAS  PubMed  Google Scholar 

  28. Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 2010;106(3):360–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960;70:68–78.

    CAS  PubMed  Google Scholar 

  30. Park JL, Lucchesi BR. Mechanisms of myocardial reperfusion injury. Ann Thorac Surg. 1999;68:1905–12.

    Article  CAS  PubMed  Google Scholar 

  31. Niu X, Zhao L, Li X, Xue Y, Wang B, Lv Z, et al. Β3-Adrenoreceptor stimulation protects against myocardial infarction injury via eNOS and nNOS activation. PLoS One. 2014;9(6):e98713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dessy C, Saliez J, Ghisdal P, Daneau Ǵ, Lobysheva II, Frérart F̧, et al. Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation. 2005;112(8):1198–205.

    Article  CAS  PubMed  Google Scholar 

  33. Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;79(2):609–34.

    Article  CAS  PubMed  Google Scholar 

  34. Tavernier et al., 2003. Beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Cardiovasc Res. 2003; 59(2):288–296.

  35. Hammond J, Balligand J. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. Mol Cell Cardiol. 2012;52(2):330–40.

    Article  CAS  Google Scholar 

  36. Lochner A, Marais E, Genade S, Moolman JA. Nitric oxide: a trigger for classic preconditioning? Am J Physiol Heart Circ Physiol. 2000;279(6):H2752–65.

    Article  CAS  PubMed  Google Scholar 

  37. Brixius K, Bloch W, Pott C, Napp A, Krahwinkel A, Ziskoven C, et al. Mechanisms of β3-adrenoceptor-induced eNOS activation in right atrial and left ventricular human myocardium. Br J Pharmacol. 2004;143(8):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brixius K, Bloch W, Ziskoven C, Bölck B, Napp A, Pott C, et al. Β 3-Adrenergic eNOS stimulation in left ventricular murine myocardium. Can J Physiol Pharmacol. 2006;84(10):1051–60.

    Article  CAS  PubMed  Google Scholar 

  39. Maffei A, Di Pardo A, Carangi R, et al. Nebivolol induces nitric oxide release in the heart through inducible nitric oxide synthase activation. Hypertension. 2007;50(4):652–6.

    Article  CAS  PubMed  Google Scholar 

  40. Calvert JW, Condit ME, Aragón JP, Nicholson CK, Moody BF, Hood RL, et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta (3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res. 2011;108(12):1448–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burley DS, Ferdinandy P, Baxter GF. Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. Br J Pharmacol. 2007;152:855–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cirino G, Sorrentino R, di Villa Bianca RD, et al. Involvement of beta 3-adrenergic receptor activation via cyclic GMP- but not NO-dependent mechanisms in human corpus cavernosum function. PNAS. 2003;100:5531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cui X, Zhang J, Ma P, Myers DE, Goldberg IG, Sittler KJ, et al. cGMP-independent nitric oxide signaling and regulation of the cell cycle. BMC Genomics. 2005;6:151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hisamoto K, Ohmichi M, Kurachi H, Hayakawa J, Kanda Y, Nishio Y, et al. Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem. 2001;276(5):3459–67.

    Article  CAS  PubMed  Google Scholar 

  45. Chamane, Nontuthuko Zoleka Lynette. MSc MedSc Thesis (Biomedical Sciences. Medical Physiology) University of Stellenbosch, 2009. The effect of hypoxia on nitric oxide and endothelial nitric oxide synthase in the whole heart and isolated cardiac cells: the role of the PI3–K/PKB pathway as a possible mediator.

  46. Salerno JC, Ghosh DK, Razdan R, et al. Endothelial nitric oxide synthase is regulated by ERK phosphorylation at Ser 602. Biosci Rep. 2014;34:00137.

    Article  CAS  Google Scholar 

  47. Chen BC, Lin WW. PKCβI mediates the inhibition of P2Y receptor-induced inositol phosphate formation in endothelial cells. Br J Pharmacol. 1999;127(8):1908–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cale JM, Bird IM. Inhibition of MEK/ERK1/2 signalling alters endothelial nitric oxide synthase activity in an agonist-dependent manner. Biochem J. 2006;398:279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feliers D, Chen X, Akis N, Choudhury GG, Madaio M, Kasinath BS. VEGF regulation of endothelial nitric oxide synthase in glomerular endothelial cells. Kidney Int. 2005;68:1648–59.

    Article  CAS  PubMed  Google Scholar 

  50. Mineo C, Yuhanna IS, Quon MJ, Shaul PW. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem. 2003;278(11):9142–9.

    Article  CAS  PubMed  Google Scholar 

  51. Angelone T, Filice E, Quintieri AM, Imbrogno S, Recchia A, Pulerà E, et al. b3-Adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta Physiol. 2008;193:229–39.

    Article  CAS  Google Scholar 

  52. Andreka P, Zang J, Dougherty C, Slepak TI, Webster KA, Bishopric NH. Cytoprotection by Jun kinase during nitric oxide–induced cardiac myocyte apoptosis. Circ Res. 2001;88:305–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruduwaan Salie.

Ethics declarations

Experimental Animals

Male Wistar rats (230 to 250 g) were used in this study. The handling of laboratory animals was in accordance with the ethical guidelines as set out by the University of Stellenbosch, Faculty of Medicine and Health Sciences Ethics Committee and the South African National Standard for Care and Use of Animals for Scientific Purpose (SANS 10386: 2008). The rats had free access to food and water prior to experimentation. Rats were anesthetized with sodium pentobarbital (30 mg/rat) by intraperitoneal injection before removal of hearts.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salie, R., Alsalhin, A.K.H., Marais, E. et al. Cardioprotective Effects of Beta3-Adrenergic Receptor (β3-AR) Pre-, Per-, and Post-treatment in Ischemia–Reperfusion. Cardiovasc Drugs Ther 33, 163–177 (2019). https://doi.org/10.1007/s10557-019-06861-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-019-06861-5

Keywords

Navigation