Skip to main content
Log in

β3-adrenoceptor impacts apoptosis in cultured cardiomyocytes via activation of PI3K/Akt and p38MAPK

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

β3-adrenoceptor (β3-AR) has been shown to promote myocardial apoptosis. However, the exact physiological role and importance of this receptor in the human myocardium, and its underlying mode of action, have not been fully elucidated. The present study aimed to determine the effects of β3-AR on the promotion of myocardial apoptosis and on norepinephrine (NE) injury. We analyzed NE-induced cardiomyocyte (CM) apoptosis by using a TUNEL and an annexin V/propidium iodide apoptosis aβsay. Furthermore, we investigated the NE-induced expreβsion of the apoptosis marker genes Akt and p38MAPK, their phosphorylated counterparts p-Akt and p-p38MAPK, caspase-3, Bcl-2, and Bax. In addition, we determined the effect of a 48-h treatment with a β3-AR agonist and antagonist on expression of these marker genes. β3-AR overexpression was found to increase CM apoptosis, accompanied by an increased expression of caspase-3, bax/bcl-2, and p-p38MAPK. In contrast, the β3-blocker reduced apoptosis of CMs and the associated elevated Akt expression. We identified a novel and potent anti-apoptosis mechanism via the PI3K/Akt pathway and a pro-apoptosis pathway mediated by p38MAPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mersmann HJ. Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J Anim Sci, 1998,76(1):160–172

    CAS  PubMed  Google Scholar 

  2. Cheng HJ, Grant KA, Han QH, et al. Up-regulation and functional effect of cardiac beta3-adrenoreceptors in alcoholic monkeys. Alcohol Clin Exp Res, 2010,34(7): 1171–1181

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Montaudon E, Dubreil L, Lalanne V, et al. Cardiac effects of long-term active immunization with the second extracellular loop of human β1-and/or β3-adrenoceptors in Lewis rats. Pharmacol Res, 2015,100(7):210–219

    Article  CAS  PubMed  Google Scholar 

  4. Ursino MG, Vasina V, Raschi E, et al. The beta3-adrenoceptor as a therapeutic target: current perspectives. Pharmacol Res, 2009,59(4):221–234

    Article  CAS  PubMed  Google Scholar 

  5. Michel MC, Ochodnicky P, Summers RJ. Tissue functions mediated by beta(3)-adrenoceptors-findings and challenges. Naunyn Schmiedebergs Arch Pharmacol, 2010, 382(2):103–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Moniotte S, Kobzik L, Feron O, et al. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation, 2001,103(12):1649–1655

    Article  CAS  PubMed  Google Scholar 

  7. Bhadada SV, Patel BM, Mehta AA, et al. beta(3) Receptors: role in cardiometabolic disorders. Ther Adv Endocrinol Metab, 2011,2(2):65–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Balligand JL. Beta3-adrenoreceptors in cardiovasular diseases: new roles for an "old" receptor. Curr Drug Deliv, 2013,10(1):64–66

    Article  CAS  PubMed  Google Scholar 

  9. Watts VL, Sepulveda FM, Cingolani OH, et al. Anti-hypertrophic and anti-oxidant effect of beta3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation. J Mol Cell Cardiol, 2013,62: 8–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Rozec B, Quang TT, Noireaud J, et al. Mixed beta3-adrenoceptor agonist and alpha1-adrenoceptor antagonist properties of nebivolol in rat thoracic aorta. Br J Pharmacol, 2006,147(7):699–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gan RT, Li WM, Wang X, et al. Effect of beta3-adrenoceptor antagonist on the cardiac function and expression of endothelial nitric oxide synthase in a rat model of heart failure. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue (Chinese), 2007,19(11):675–678

    CAS  Google Scholar 

  12. Tamburella A, Micale V, Leggio GM, et al. The beta3 adrenoceptor agonist, amibegron (SR58611A) counteracts stress-induced behavioral and neurochemical changes. Eur Neuropsychopharmacol, 2010,20(10):704–713

    Article  CAS  PubMed  Google Scholar 

  13. Kong YH, Li WM, Tian Y. Effect of beta3-adrenoreceptors agonist on beta3-adrenoreceptors expression and myocyte apoptosis in a rat model of heart failure. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue (Chinese), 2004,16(3):142–147

    CAS  Google Scholar 

  14. Zheng M, Fu YH, Xiao DZ. β3-AR regulates the anti-apoptotic effect of myocardial MIF through cGMP-PKG-p38. Zhongguo Bingli Shengli Zazhi (Chinese), 2010,26(10):1966–1977

    Google Scholar 

  15. McCain ML, Agarwal A, Nesmith HW, et al. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials, 2014,35(21): 5462–5471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yun CF, Ching SC, Sui CY, et al. Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species–TNFα–caspase signaling pathway. Cardiovasc Res, 2004,62(3):558–567

    Article  Google Scholar 

  17. Dal MM, Casini G, Filippi L, et al. Functional involvement of beta3-adrenergic receptors in melanoma growth and vascularization. J Mol Med (Berl), 2013,91(12): 1407–1419

    Article  Google Scholar 

  18. Chernogubova E, Cannon B, Bengtsson T. Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology, 2004,145(1): 269–280

    Article  CAS  PubMed  Google Scholar 

  19. Rengo G, Pagano G, Parisi V, et al. Changes of plasma norepinephrine and serum N-terminal pro-brain natriuretic peptide after exercise training predict survival in patients with heart failure. Int J Cardiol, 2014,171(3):384–389

    Article  PubMed  Google Scholar 

  20. Communal C, Singh K, Pimentel DR, et al. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation, 1998,98(13):1329–1334

    Article  CAS  PubMed  Google Scholar 

  21. Gauthier C, Rozec B, Manoury B, et al. Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies. Curr Heart Fail Rep, 2011,8(3):184–192

    Article  CAS  PubMed  Google Scholar 

  22. Niu X, Watts VL, Cingolani OH, et al. Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol, 2012, 59(22):1979–1987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rosa GM, Ferrero S, Nitti VW, et al. Cardiovascular safety of β(3)-adrenoceptor agonists for the treatment of patients with overactive bladder syndrome. Eur Urol, 2015,9(7):864–867

    Google Scholar 

  24. Michel MC, Harding SE, Bond RA. Are there functional beta(3)-adrenoceptors in the human heart? Br J Pharmacol, 2011,162(4):817–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lauber K, Bohn E, Krober SM, et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell, 2003,113(6): 717–730

    Article  CAS  PubMed  Google Scholar 

  26. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the Failing Human Heart. N Engl J Med, 1997,336(16):1131–1141

    Article  CAS  PubMed  Google Scholar 

  27. Yin C, Knudson CM, Korsmeyer SJ, et al. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature, 1997,385(6617):637–640

    Article  CAS  PubMed  Google Scholar 

  28. Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol, 2014,15(1):49–63

    Article  CAS  PubMed  Google Scholar 

  29. Jhaveri DJ, Mackay EW, Hamlin AS, et al. Norepinephrine directly activates adult hippocampal precursors via beta3-adrenergic receptors. J Neurosci, 2010,30(7): 2795–2806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sussman MA, Volkers M, Fischer K, et al. Myocardial AKT: the omnipresent nexus. Physiol Rev, 2011,91(3): 1023–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cittadini A, Monti MG, Iaccarino G, et al. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling. Gene Ther, 2006,13(1): 8–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kitamura Y, Koide M, Akakabe Y, et al. Manipulation of cardiac phosphatidylinositol 3-kinase (PI3K)/Akt signaling by apoptosis regulator through modulating IAP expression (ARIA) regulates cardiomyocyte death during doxorubicin-induced cardiomyopathy. J Biol Chem, 2014,289(5):2788–2800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hammerschmidt S, Kuhn H, Gessner C, et al. Stretch-induced alveolar type II cell apoptosis: role of endogenous bradykinin and PI3K-Akt signaling. Am J Respir Cell Mol Biol, 2007,37(6):699–705

    Article  CAS  PubMed  Google Scholar 

  34. Omura T, Yoshiyama M, Kim S, et al. Involvement of apoptosis signal-regulating kinase-1 on angiotensin II-induced monocyte chemoattractant protein-1 expression. Arterioscler Thromb Vasc Biol, 2004,24(2):270–275

    Article  CAS  PubMed  Google Scholar 

  35. De Chiara G, Marcocci ME, Torcia M, et al. Bcl-2 Phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J Biol Chem, 2006,281(30): 21353–21361

    Article  PubMed  Google Scholar 

  36. Ufer C, Germack R. Cross-regulation between beta 1-and beta 3-adrenoceptors following chronic beta-adrenergic stimulation in neonatal rat cardiomyocytes. Br J Pharmacol, 2009,158(1):300–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang  (王 丽).

Additional information

This project was supported by the National Natural Science Foundation of China (No. 81260028).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Mm., Zhu, Xl., Wang, L. et al. β3-adrenoceptor impacts apoptosis in cultured cardiomyocytes via activation of PI3K/Akt and p38MAPK. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 1–7 (2016). https://doi.org/10.1007/s11596-016-1533-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1533-7

Key words

Navigation