Skip to main content

Advertisement

Log in

The Consequences of Long-Term Glycogen Synthase Kinase-3 Inhibition on Normal and Insulin Resistant Rat Hearts

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background

Glycogen synthase kinase-3 (GSK-3) is a serine-threonine protein kinase, discovered as a regulator of glycogen synthase. GSK-3 may regulate the expression of SERCA-2a potentially affecting myocardial contractility. It is known to phosphorylate and inhibit IRS-1, thus disrupting insulin signalling. This study aimed to determine whether myocardial GSK-3 protein and its substrate proteins are dysregulated in obesity and insulin resistance, and whether chronic GSK-3 inhibition can prevent or reverse this.

Methods

Weight matched male Wistar rats were rendered obese by hyperphagia using a special diet (DIO) for 16 weeks and compared to chow fed controls. Half of each group was treated with the GSK-3 inhibitor CHIR118637 (30 mg/kg/day) from week 12 to16 of the diet period. Biometric and biochemical parameters were measured and protein expression determined by Western blotting and specific antibodies. Ca2+ATPase activity was determined spectrophotometrically. Cardiomyocytes were prepared by collagenase perfusion and insulin stimulated 2-deoxy-glucose uptake determined.

Results

DIO rats were significantly heavier than controls, associated with increased intra-peritoneal fat and insulin resistance. GSK-3 inhibition did not affect weight but improved insulin resistance, also on cellular level. It had no effect on GSK-3 expression but elevated its phospho/total ratio and elevated IRS-2 expression. Obesity lowered SERCA-2a expression and activity while GSK-3 inhibition alleviated this. The phospho/total ratio of phospholamban underscored inhibition of SERCA-2a in obesity. In addition, signs of myocardial hypertrophy were observed in treated control rats.

Conclusion

GSK-3 inhibition could not reverse all the detrimental effects of obesity but may be harmful in normal rat hearts. It regulates IRS-2, SERCA-2a and phospholamban expression but not IRS-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hemmings BA, Yellowlees D, Kernohan JC, Cohen P. Purification of glycogen synthase kinase 3 from rabbit skeletal muscle. Co-purification with the activation factor(FA) of the (Mg-ATP) dependent protein phosphatase. Eur J Biochem. 1981;119:443–51.

    Article  PubMed  CAS  Google Scholar 

  2. Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107:519–27.

    Article  PubMed  CAS  Google Scholar 

  3. Huisamen B, Lochner A. GSK-3 protein and the heart: friend or foe? SAHeart. 2010;7:48–57.

    Google Scholar 

  4. Woodgett JR. Judging a protein by more than its name: GSK-3. Sci STKE. 2001;2001(100):re12.

    Article  PubMed  CAS  Google Scholar 

  5. Ciaraldi TP, Nikoulina SE, Bandukwala RA, Carter L, Henry RR. Role of glycogen synthase kinase-3 alpha in insulin action in cultured human skeletal muscle cells. Endocrinology. 2007;148:4393–9.

    Article  PubMed  CAS  Google Scholar 

  6. Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990;9:2431–8.

    PubMed  CAS  Google Scholar 

  7. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003;116:1175–86.

    Article  PubMed  CAS  Google Scholar 

  8. Parker PJ, Caudwell FB, Cohen P. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur J Biochem. 1983;130:227–34.

    Article  PubMed  CAS  Google Scholar 

  9. Mora A, Sakamoto K, McManus EJ, Alessi DR. Role of the PDK-1-PKB-GSK-3 pathway in regulating glycogen synthase and glucose uptake in the heart. FEBS Lett. 2005;579:3632–8.

    Article  PubMed  CAS  Google Scholar 

  10. Eldar-Finkelman H, Argast GM, Foord O, Fischer EH, Krebs EG. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells. Proc Natl Acad Sci U S A. 1996;93(19):10228–33.

    Article  PubMed  CAS  Google Scholar 

  11. Michael A, Haq S, Chen X, Hsich E, Cui L, Walters B, et al. Glycogen synthase kinase-3beta regulates growth, calcium homeostasis, and diastolic function in the heart. J Biol Chem. 2004;279:21383–93.

    Article  PubMed  CAS  Google Scholar 

  12. Omar MA, Wang L, Clanachan AS. Cardioprotection by GSK-3 inhibition: role of enhanced glycogen synthesis and attenuation of calcium overload. Cardiovasc Res. 2010;86(3):478–86.

    Article  PubMed  CAS  Google Scholar 

  13. Takeda N. Cardiac disturbances in diabetes mellitus. Pathophysiology. 2010;17:83–8.

    Article  PubMed  Google Scholar 

  14. Asahi M, Nakayama H, Tada M, Otsu K. Regulation of sarco(endo)plasmic reticulum Ca2+ adenosine triphosphatase by phospholamban and sarcolipin: implication for cardiac hypertrophy and failure. Trends Cardiovasc Med. 2003;13:152–7.

    Article  PubMed  CAS  Google Scholar 

  15. Huisamen B, Dietrich D, Blackhurst D, Flepisi B, Lochner A. Early cardiovascular changes occurring in diet-induced obese, insulin resistant rats. Mol Cell Biochem. 2012;368:37–45.

    Article  PubMed  CAS  Google Scholar 

  16. Huisamen B, Pêrel SJC, Friedrich SO, Salie R, Strijdom H, Lochner A. AngII receptor antagonism improves nitric oxide production, eNOS and PKB expression in hearts from a rat model of insulin resistance. Mol Cell Biochem. 2011;349:21–31.

    Article  PubMed  CAS  Google Scholar 

  17. Huisamen B, Genis A, Lochner A. Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther. 2011;25:13–20.

    Article  PubMed  CAS  Google Scholar 

  18. Henriksen EJ, Dokken BB. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets. 2006;7:1435–41.

    Article  PubMed  CAS  Google Scholar 

  19. Cline GW, Johnson K, Regittnig W, Perret P, Tozzo E, Xiao L, et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes. 2002;51:2903–10.

    Article  PubMed  CAS  Google Scholar 

  20. Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci. 2004;25:471–80.

    Article  PubMed  CAS  Google Scholar 

  21. Wagman AS, Johnson KW, Bussiere DE. Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes. Curr Pharm Des. 2004;10:1105–37.

    Article  PubMed  CAS  Google Scholar 

  22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  23. Feher JJ, Davis MD. Isolation of rat cardiac sarcoplasmic reticulum with improved Ca2+ uptake and ryanodine binding. J Mol Cell Cardiol. 1991;23:249–58.

    Article  PubMed  CAS  Google Scholar 

  24. Bers DM. Isolation and characterization of cardiac sarcolemma. Biochem Biophys Acta. 1979;555:131–6.

    Article  PubMed  CAS  Google Scholar 

  25. Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:375–400.

    CAS  Google Scholar 

  26. Donthi R, Huisamen B, Lochner A. The effect of vanadate and insulin on glucose transport in isolated adult rat cardiomyocytes. Cardiovasc Drugs Ther. 2000;14:463–70.

    Article  PubMed  CAS  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    PubMed  CAS  Google Scholar 

  28. Suarez J, Scott B, Dillmann WH. Conditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1439–45.

    Article  PubMed  CAS  Google Scholar 

  29. Eldar-Finkelman H, Licht-Murava A, Pietrokovski S, Eisenstein M. Substrate competitive GSK-3 inhibitors—strategy and implications. Biochim Biophys Acta. 1804;2010:598–603.

    Google Scholar 

  30. Martinez A. Preclinical efficacy on GSK-3 inhibitors: towards a future generation of powerful drugs. Med Res Rev. 2008;28:773–96.

    Article  PubMed  CAS  Google Scholar 

  31. Lee S, Yang WK, Song JH, Ra YM, Jeong JH, Choe W, et al. Anti-obesity effects of 3-hydroxychromone derivative, a novel small-molecule inhibitor of glycogen synthase kinase-3. Biochem Pharmacol. 2013;85:965–76.

    Article  PubMed  CAS  Google Scholar 

  32. Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. Physiol Rev. 2008;88:389–419.

    Article  PubMed  CAS  Google Scholar 

  33. Chess DJ, Stanley WC. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res. 2008;79:269–78.

    Article  PubMed  CAS  Google Scholar 

  34. Wolk R. Arrhythmogenic mechanisms in left ventricular hypertrophy. Europace. 2000;2:216–23.

    Article  PubMed  CAS  Google Scholar 

  35. Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A, et al. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol. 2000;151:117–30.

    Article  PubMed  CAS  Google Scholar 

  36. Roach PJ. Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J. 1990;4:2961–8.

    PubMed  CAS  Google Scholar 

  37. Zhang W, DePaoli-Roach AA, Roach PJ. Mechanisms of multisite phosphorylation and inactivation of rabbit muscle glycogen synthase. Arch Biochem Biophys. 1993;304:219–25.

    Article  PubMed  CAS  Google Scholar 

  38. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990;322:223–8.

    Article  PubMed  CAS  Google Scholar 

  39. Cline GW, Rothman DL, Magnusson I, Katz LD, Shulman GI. 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus. J Clin Invest. 1994;94:2369–76.

    Article  PubMed  CAS  Google Scholar 

  40. Ring DB, Johnson KW, Henriksen EJ, Nuss JM, Goff D, Kinnick TR, et al. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes. 2003;52:588–95.

    Article  PubMed  CAS  Google Scholar 

  41. Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol. 2000;7:793–803.

    Article  PubMed  CAS  Google Scholar 

  42. Nikoulina SE, Ciaraldi TP, Mudaliar S, Carter L, Johnson K, Henry RR. Inhibition of glycogen synthase kinase 3 improves insulin action and glucose metabolism in human skeletal muscle. Diabetes. 2002;51:2190–8.

    Article  PubMed  CAS  Google Scholar 

  43. Gao HK, Yin Z, Zhou N, Feng XY, Gao F, Wang HC. Glycogen synthase kinase 3 inhibition protects the heart from acute ischemia-reperfusion injury via inhibition of inflammation and apoptosis. J Cardiovasc Pharmacol. 2008;52:286–92.

    Article  PubMed  CAS  Google Scholar 

  44. MacAulay K, Blair AS, Hajduch E, Terashima T, Baba O, Sutherland C, et al. Constitutive activation of GSK3 down-regulates glycogen synthase abundance and glycogen deposition in rat skeletal muscle cells. J Biol Chem. 2005;280:9509–18.

    Article  PubMed  CAS  Google Scholar 

  45. Dihlmann S, Kloor M, Fallsehr C, Von Knebel DM. Regulation of Akt1 expression by beta-catenin/Tcf/Lef signalling in colorectal cancer cells. Carcinogenesis. 2005;26:1503–12.

    Article  PubMed  CAS  Google Scholar 

  46. Henriksen EJ, Teachey MK. Short-term in vitro inhibition of glycogen synthase kinase 3 potentiates insulin signalling in type I skeletal muscle of Zucker diabetic Fatty rats. Metabolism. 2007;56:931–8.

    Article  PubMed  CAS  Google Scholar 

  47. Wade A. GSK-3 inhibitors and insulin receptor signalling in health, disease and therapeutics. Front Biosci. 2009;14:1558–70.

    Article  Google Scholar 

  48. Ciaraldi TP, Carter L, Mudaliar S, Henry RR. GSK-3beta and control of glucose metabolism and insulin action in human skeletal muscle. Mol Cell Endocrinol. 2010;315:153–8.

    Article  PubMed  CAS  Google Scholar 

  49. Araki E, Lipes MA, Patti ME, Brüning JC, Haag 3rd B, Johnson RS, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994;372:186–90.

    Article  PubMed  CAS  Google Scholar 

  50. Vittorini S, Storti S, Parri MS, Cerillo AG, Clerico A. SERCA2a, phospholamban, sarcolipin, and ryanodine receptors gene expression in children with congenital heart defects. Mol Med. 2007;13:105–11.

    Article  PubMed  CAS  Google Scholar 

  51. James P, Inui M, Tada M, Chiesi M, Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature. 1989;342:90–2.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Huisamen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flepisi, T.B., Lochner, A. & Huisamen, B. The Consequences of Long-Term Glycogen Synthase Kinase-3 Inhibition on Normal and Insulin Resistant Rat Hearts. Cardiovasc Drugs Ther 27, 381–392 (2013). https://doi.org/10.1007/s10557-013-6467-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-013-6467-8

Keywords

Navigation