Skip to main content

Advertisement

Log in

Simvastatin Ameliorates Angiotensin II-Induced Endothelial Dysfunction Through Restoration of Rho-BH4-eNOS-NO Pathway

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Endothelial dysfunction contributes to the initiation and development of hypertension. We previously found that simvastatin moderately decreases blood pressure in 2-kidney-2-clip (2k2c) renal hypertension, but the precise mechanisms are still unclear. The present study was designed to examine the protective actions of simvastatin in 2k2c-evoked endothelial dysfunction and also delineate the underlying mechanisms. Here we show that 2k2c-induced elevation in plasma angiotensin II impaired acetylcholine-induced endothelium-dependent vascular relaxation, suppressed endothelial NO synthase (eNOS) activity and reduced nitric oxide (NO) production. Additionally, the levels of tetrahydrobiopterin (BH4), an essential cofactor of eNOS, as well as the activity of GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme for BH4 synthesis, were markedly reduced. Administration of simvastatin significantly improved acetylcholine-induced endothelium-dependent carotid arteries relaxation at 9 weeks in reno-hypertensive rats. Notably, GTPCH I activity, BH4 production, p-eNOS expression and NO levels in the vascular endothelium were elevated as a result of simvastatin administration. In cultured rat arterial endothelial cells, simvastatin restored BH4, GTPCH I activity and NO release impaired by angiotensin II, and pretreatment with mevalonate (MVA) or geranylgeranyl pyrophosphate (GGPP) abolished the beneficial effects exerted by simvastatin. Moreover, RhoA inhibitor C3 exoenzyme, Rho kinase inhibitor Y-27632 and dominant negative mutant of RhoA prevented BH4 and NO loss due to Ang II treatment. Taken together, normalization of BH4-eNOS-NO pathway at least in part accounts for the beneficial actions of simvastatin on vascular endothelium during 2k2c hypertension, and RhoA-Rho kinase pathway is involved in regulation of BH4 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tang EH, Vanhoutte PM. Endothelial dysfunction: a strategic target in the treatment of hypertension? Pflugers Arch. 2010;459:995–1004.

    Article  PubMed  CAS  Google Scholar 

  2. Willerson JT, Kereiakes DJ. Endothelial dysfunction. Circulation. 2003;108:2060–1.

    Article  PubMed  Google Scholar 

  3. Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24:998–1005.

    Article  PubMed  CAS  Google Scholar 

  4. Hong HJ, Hsiao G, Cheng TH, Yen MH. Supplemention with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats. Hypertension. 2001;38:1044–8.

    Article  PubMed  CAS  Google Scholar 

  5. Bevers LM, Braam B, Post JA, van Zonneveld AJ, Rabelink TJ, Koomans HA, et al. Tetrahydrobiopterin, but not L-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase. Hypertension. 2006;47:87–94.

    Article  PubMed  CAS  Google Scholar 

  6. Kang KT, Sullivan JC, Spradley FT, d’Uscio LV, Katusic ZS, Pollock JS. Antihypertensive therapy increases tetrahydrobiopterin levels and NO/cGMP signaling in small arteries of angiotensin II-infused hypertensive rats. Am J Physiol Heart Circ Physiol. 2011;300:H718–24.

    Article  PubMed  CAS  Google Scholar 

  7. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111:1201–9.

    PubMed  CAS  Google Scholar 

  8. Meininger CJ, Cai S, Parker JL, Channon KM, Kelly KA, Becker EJ, et al. GTP cyclohydrolase I gene transfer reverses tetrahydrobiopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic rats. FASEB J. 2004;18:1900–2.

    PubMed  CAS  Google Scholar 

  9. Cai S, Khoo J, Mussa S, Alp NJ, Channon KM. Endothelial nitric oxide synthase dysfunction in diabetic mice: importance of tetrahydrobiopterin in eNOS dimerisation. Diabetologia. 2005;48:1933–40.

    Article  PubMed  CAS  Google Scholar 

  10. Hattori Y, Hattori S, Wang X, Satoh H, Nakanishi N, Kasai K. Oral administration of tetrahydrobiopterin slows the progression of atherosclerosis in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol. 2007;27:865–70.

    Article  PubMed  CAS  Google Scholar 

  11. Mitchell BM, Dorrance AM, Webb RC. GTP cyclohydrolase 1 inhibition attenuates vasodilation and increases blood pressure in rats. Am J Physiol Heart Circ Physiol. 2003;285:H2165–70.

    PubMed  CAS  Google Scholar 

  12. Du YH, Guan YY, Alp NJ, Channon KM, Chen AF. Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension. Circulation. 2008;117:1045–54.

    Article  PubMed  CAS  Google Scholar 

  13. Zheng JS, Yang XQ, Lookingland KJ, Fink GD, Hesslinger C, Kapatos G, et al. Gene transfer of human guanosine 5′-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension. Circulation. 2003;108:1238–45.

    Article  PubMed  CAS  Google Scholar 

  14. Nassief A, Marsh JD. Statin therapy for stroke prevention. Stroke. 2008;39:1042–8.

    Article  PubMed  CAS  Google Scholar 

  15. Wenzel P, Daiber A, Oelze M, Brandt M, Closs E, Xu J, et al. Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus. Atherosclerosis. 2008;198:65–76.

    Article  PubMed  CAS  Google Scholar 

  16. Whaley-Connell A, Habibi J, Nistala R, Cooper SA, Karuparthi PR, Hayden MR, et al. Attenuation of NADPH oxidase activation and glomerular filtration barrier remodeling with statin treatment. Hypertension. 2008;51:474–80.

    Article  PubMed  CAS  Google Scholar 

  17. Goldstein LB, Amarenco P, Lamonte M, Gilbert S, Messig M, Callahan A, et al. Relative effects of statin therapy on stroke and cardiovascular events in men and women: secondary analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Study. Stroke. 2008;39:2444–8.

    Article  PubMed  CAS  Google Scholar 

  18. Liu YJ, Wang XG, Tang YB, Chen JH, Lv XF, Zhou JG, et al. Simvastatin ameliorates rat cerebrovascular remodeling during hypertension via inhibition of volume-regulated chloride channel. Hypertension. 2010;56:445–52.

    Article  PubMed  CAS  Google Scholar 

  19. Kolavennu V, Zeng L, Peng H, Wang Y, Danesh FR. Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes. 2008;57:714–23.

    Article  PubMed  CAS  Google Scholar 

  20. Li J, Xie ZZ, Tang YB. Genistein prevents myocardial hypertrophy in 2-kidney 1-clip renal hypertensive rats by restoring eNOS pathway. Pharmacology. 2010;86:240–8.

    Article  PubMed  CAS  Google Scholar 

  21. Du RH, Tang YB, Zhou JG, Guan YY. Effects of Tween 80 on volume-regulated chloride channel and cell proliferation in rat basilar artery smooth muscle cell. J Pharm Pharmacol. 2011;63:253–60.

    Article  PubMed  CAS  Google Scholar 

  22. Wallerath T, Witte K, Schafer SC, Schwarz PM, Prellwitz W, Wohlfart P, et al. Down-regulation of the expression of endothelial NO synthase is likely to contribute to glucocorticoid-mediated hypertension. Proc Natl Acad Sci U S A. 1999;96:13357–62.

    Article  PubMed  CAS  Google Scholar 

  23. Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S, et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol. 2002;22:8467–77.

    Article  PubMed  CAS  Google Scholar 

  24. Ruiz P, Basso N, Grinspon D, Mangiarua E, Cannata MA. Angiotensinogen concentration in the cerebrospinal fluid in different experimental conditions in the rat. Hypertension. 1983;5:V29–33.

    PubMed  CAS  Google Scholar 

  25. Sun Y, Carretero OA, Xu J, Rhaleb NE, Yang JJ, Pagano PJ, et al. Deletion of inducible nitric oxide synthase provides cardioprotection in mice with 2-kidney, 1-clip hypertension. Hypertension. 2009;53:49–56.

    Article  PubMed  CAS  Google Scholar 

  26. Crabtree MJ, Channon KM. Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide.

  27. Iwanciw D, Rehm M, Porst M, Goppelt-Struebe M. Induction of connective tissue growth factor by angiotensin II: integration of signaling pathways. Arterioscler Thromb Vasc Biol. 2003;23:1782–7.

    Article  PubMed  CAS  Google Scholar 

  28. Rossoni LV, Wareing M, Wenceslau CF, Al-Abri M, Cobb C, Austin C. Acute simvastatin increases endothelial nitric oxide synthase phosphorylation via AMP-activated protein kinase and reduces contractility of isolated rat mesenteric resistance arteries. Clin Sci (Lond). 2011;121:449–58.

    Article  CAS  Google Scholar 

  29. Li X, Wang P, Xu X, Wang Y, Xia Y, Wang D. Simvastatin increases the activity of endothelial nitric oxide synthase via enhancing phosphorylation. Journal of Huazhong University of Science and Technology Medical sciences = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao. 2009;29:286–90.

    CAS  Google Scholar 

  30. Wang S, Xu J, Song P, Wu Y, Zhang J. Chul Choi H, et al. Acute inhibition of guanosine triphosphate cyclohydrolase 1 uncouples endothelial nitric oxide synthase and elevates blood pressure. Hypertension. 2008;52:484–90.

    Article  PubMed  CAS  Google Scholar 

  31. Li L, Rezvan A, Salerno JC, Husain A, Kwon K, Jo H, et al. GTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide. Circ Res. 2010;106:328–36.

    Article  PubMed  CAS  Google Scholar 

  32. Artunc F, Essig M, Artunc N, Plachtzik C, Reich M, Boehmer G, et al. Effects of tetrahydrobiopterin on nitric oxide bioavailability and renal hemodynamics in healthy volunteers. J Nephrol. 2008;21:850–60.

    PubMed  CAS  Google Scholar 

  33. Moens AL, Takimoto E, Tocchetti CG, Chakir K, Bedja D, Cormaci G, et al. Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation. 2008;117:2626–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Sources of Funding

This work was supported by the National Natural Science Foundation of China (No.30900530), Science and Technology Planning Project of Guangdong Province, China (No.2008B030303061; No.2008B080703056; NO.2010B080701044; 2011B080701012), and Doctoral Fund of Ministry of Education of China (for young teachers, No.20090171120055).

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Hong Liu or Yong-Bo Tang.

Additional information

Zheng Zhang and Mi Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Wang, M., Xue, SJ. et al. Simvastatin Ameliorates Angiotensin II-Induced Endothelial Dysfunction Through Restoration of Rho-BH4-eNOS-NO Pathway. Cardiovasc Drugs Ther 26, 31–40 (2012). https://doi.org/10.1007/s10557-011-6351-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-011-6351-3

Key words

Navigation