Skip to main content

Advertisement

Log in

LOX-1, Oxidative Stress and Inflammation: A Novel Mechanism for Diabetic Cardiovascular Complications

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a common metabolic disease characterized by a state of oxidative stress, inflammation and endothelial dysfunction. This malady can lead to a number of complications such as ischemic heart disease, nephropathy, neuropathy, retinopathy and impaired wound healing. The etiology of diabetic complications is multifactorial, and is closely associated with oxidative stress and inflammation. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a receptor for oxidized low density lipoprotein (ox-LDL), plays critical roles in multiple signal transduction pathways and is involved in the process of oxidative stress and inflammation. Recent studies provide important insights into the roles of LOX-1 in the development and progression of diabetic vasculopathy which is the underlying mechanism of diabetic complications. In this review, we summarize mechanistic studies, mainly related to LOX-1, on the development and progression of diabetes mellitus and its cardiovascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    Article  PubMed  Google Scholar 

  2. Kahn B, Flier J. Obesity and insulin resistance. J Clin Invest. 2000;106:473–81.

    Article  PubMed  CAS  Google Scholar 

  3. Graves DT, Kayal RA. Diabetic complications and dysregulated innate immunity. Front Biosci. 2008;13:1227–39.

    Article  PubMed  CAS  Google Scholar 

  4. Mazzone T, Chait A, Plutzky J. Addressing cardiovascular disease risk in diabetes: insights from mechanistic studies. Lancet. 2008;371:1800–9.

    Article  PubMed  CAS  Google Scholar 

  5. Karalliedde J, Gnudi L. Future strategies to prevent renal microvascular disease complications in diabetes. Future Cardiol. 2008;4:77–83.

    Article  PubMed  Google Scholar 

  6. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature. 1997;386:73–7.

    Article  PubMed  CAS  Google Scholar 

  7. Yoshida H, Kondratenko N, Green S, Steinberg D, Quehenberger O. Identification of the lectin-like receptor for oxidized low-density lipoprotein in human macrophages and its potential role as a scavenger receptor. Biochem J. 1998;334:9–13.

    PubMed  CAS  Google Scholar 

  8. Kataoka H, Kume N, Miyamoto S, Minami M, Morimoto M, Hayashida K, et al. Oxidized LDL modulates Bax/Bcl-2 through the lectin-like ox-LDL receptor-1 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2001;21:955–60.

    Article  PubMed  CAS  Google Scholar 

  9. Martín-Fuentes P, Civeira F, Recalde D, García-Otín AL, Jarauta E, Marzo I, et al. Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response. J Immunol. 2007;179:3242–8.

    PubMed  Google Scholar 

  10. Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002;277:49982–8.

    Article  PubMed  CAS  Google Scholar 

  11. Hu CP, Mehta JL. Biology of LOX-1 in relation to atherogenesis. Future lipidol. 2008;3:689–96.

    Article  CAS  Google Scholar 

  12. Ogura S, Kakino A, Sato Y, Fujita Y, Iwamoto S, Otsui K, et al. LOX-1: The multifunctional receptor underlying cardiovascular dysfunction. Circ J. 2009;73:1993–9.

    Article  PubMed  CAS  Google Scholar 

  13. Nagase M, Hirose S, Sawamura T, Masaki T, Fujita T. Enhanced expression of endothelial oxidized low-density lipoprotein receptor (LOX-1) in hypertensive rats. Biochem Biophys Res Commun. 1997;237:496–8.

    Article  PubMed  CAS  Google Scholar 

  14. Chen M, Nagase M, Fujita T, Narumiya S, Masaki T, Sawamura T. Diabetes Enhances Lectin-like Oxidized LDL Receptor-1 (LOX-1) Expression in the Vascular Endothelium: Possible Role of LOX-1 Ligand and AGE. Biochem Biophys Res Commun. 2001;287:962–8.

    Article  PubMed  CAS  Google Scholar 

  15. Chen H, Li D, Sawamura T, Inoue K, Mehta J. Upregulation of LOX-1 expression in aorta of hypercholesterolemic rabbits: Modulation by losartan. Biochem Biophys Res Commun. 2000;276:1100–4.

    Article  PubMed  CAS  Google Scholar 

  16. Ueno T, Kaname S, Takaichi K, Nagase M, Tojo A, Onozato ML, et al. LOX-1, an oxidized low-density lipoprotein receptor, was upregulated in the kidneys of chronic renal failure rats. Hypertens Res. 2003;26:117–22.

    Article  PubMed  CAS  Google Scholar 

  17. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287:2570–81.

    Article  PubMed  CAS  Google Scholar 

  18. Pyörälä K, Laakso M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev. 1987;3:463–524.

    Article  PubMed  Google Scholar 

  19. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.

    Article  PubMed  CAS  Google Scholar 

  20. Rudijanto A. The expression and down stream effect of lectin like-oxidized low Density lipoprotein 1 (LOX-1) in hyperglycemic state. Acta Med Indones. 2007;39:36–43.

    PubMed  Google Scholar 

  21. Hayden JM, Reaven PD. Cardiovascular disease in diabetes mellitus type 2: a potential role for novel cardiovascular risk factors. Curr Opin Lipidol. 2000;11:519–28.

    Article  PubMed  CAS  Google Scholar 

  22. McSorley PT, Young IS, McEneny J, Fee H, McCance DR. Susceptibility of low-density lipoprotein to oxidation and circulating cell adhesion molecules in young healthy adult offspring of parents with type 2 diabetes. Metabolism. 2004;53:755–9.

    Article  PubMed  CAS  Google Scholar 

  23. Hussein OA, Gefen Y, Zidan JM, Karochero EY, Luder AS, Assy NN, et al. LDL oxidation is associated with increased blood hemoglobin A1c levels in diabetic patients. Clinica Chimica Acta. 2007;377:114–8.

    Article  CAS  Google Scholar 

  24. Pennathur S, Heinecke JW. Mechanisms for oxidative stress in diabetic cardiovascular disease. Antiox Redox Sig. 2007;9:955–69.

    Article  CAS  Google Scholar 

  25. Kawamura M, Heinecke JW, Chait A. Pathophysiological concentrations of glucose promote oxidative modification of low-density-lipoprotein by a superoxide-dependent pathway. J Clin Invest. 1994;94:771–8.

    Article  PubMed  CAS  Google Scholar 

  26. Piga R, Naito Y, Kokura S, Handa O, Yoshikawa T. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis. 2007;193:328–34.

    Article  PubMed  CAS  Google Scholar 

  27. Dasu MR, Devaraj S, Jialal I. High glucose induces IL-1 beta expression in human monocytes: mechanistic insights. Am J Physiol Endocrinol Metab. 2007;293:E337–E46.

    Article  PubMed  CAS  Google Scholar 

  28. Cipolletta C, Ryan KE, Hanna EV, Trimble ER. Activation of peripheral blood CD14(+) monocytes occurs in diabetes. Diabetes. 2005;54:2779–86.

    Article  PubMed  CAS  Google Scholar 

  29. Mehta JL, Chen J, Hermonat PL, Romeo F, Novelli G. Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res. 2006;69:36–45.

    Article  PubMed  CAS  Google Scholar 

  30. Rodriguez-Moran M, Guerrero-Romero F. Increased levels of C-reactive protein in noncontrolled type II diabetic subjects. J Diabet Complicat. 1999;13:211–5.

    Article  CAS  Google Scholar 

  31. Schena FP, Gesualdo L. Pathogenetic Mechanisms of Diabetic Nephropathy. J Am Soc Nephrol. 2005;16:S30–3.

    Article  PubMed  CAS  Google Scholar 

  32. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia. 1989;32:219–26.

    Article  PubMed  CAS  Google Scholar 

  33. Long DA, Price KL, Herrera-Acosta J, Johnson RJ. How does angiotensin II cause renal injury? Hypertension. 2004;43:722–3.

    Article  PubMed  CAS  Google Scholar 

  34. Forbes JM, Cooper ME. Diabetic nephropathy: where hemodynamics meets metabolism. Exp Clin Endocrinol Diabetes. 2007;115:69–84.

    Article  PubMed  CAS  Google Scholar 

  35. Kelly KJ, Wu P, Patterson CE, Temm C, Dominguez JH. LOX-1 and inflammation: a new mechanism for renal injury in obesity and diabetes. Am J Physiol Renal Physiol. 2008;294:F1136–45.

    Article  PubMed  CAS  Google Scholar 

  36. Aoyama T, Fujiwara H, Masaki T, Sawamura T. Induction of lectin-like oxidized LDL receptor by oxidized LDL and lysophosphatidylcholine in cultred endothelial cell. J Mol Cell Cardiol. 1999;31:2101–14.

    Article  PubMed  CAS  Google Scholar 

  37. Li D, Mehta JL. Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol. 2000;20:1116–22.

    Article  PubMed  CAS  Google Scholar 

  38. Marsche G, Levak-Frank S, Quehenberger O, Heller R, Sattler W, Malle E. Identification of the human analog of SR-BI and LOX-1 as receptors for hypochlorite-modified high density lipoprotein on human umbilical venous endothelial cells. FASEB J. 2001;15:1095–7.

    PubMed  CAS  Google Scholar 

  39. Oka K, Sawamura T, Kikuta K-i, Itokawa S, Kume N, Kita T, et al. Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc Natl Acad Sci USA. 1998;95:9535–40.

    Article  PubMed  CAS  Google Scholar 

  40. Honjo M, Nakamura K, Yamashiro K, Kiryu J, Tanihara H, McEvoy LM, et al. Lectin-like oxidized LDL receptor-1 is a cell-adhesion molecule involved in endotoxin-induced inflammation. Proc Natl Acad Sci USA. 2003;100:1274–9.

    Article  PubMed  CAS  Google Scholar 

  41. Kakutani M, Masaki T, Sawamura T. A platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1. Proc Natl Acad Sci USA. 2000;97:360–4.

    Article  PubMed  CAS  Google Scholar 

  42. Shimaoka T, Kume N, Minami M, Hayashida K, Sawamura T, Kita T, et al. LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J Immunol. 2001;166:1508–14.

    Google Scholar 

  43. Murphy JE, Tacon D, Tedbury PR, Hadden JM, Knowling S, Sawamura T, et al. LOX-1 scavenger receptor mediates calcium-dependent recognition of phosphatidylserine and apoptotic cells. Biochem J. 2006;393:107–15.

    Article  PubMed  CAS  Google Scholar 

  44. Jonoab T, Miyazakia A, Nagaia R, Sawamurac T, Kitamurab T, Horiuchia S. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) serves as an endothelial receptor for advanced glycation end products (AGE). FEBS Lett. 2002;511:170–4.

    Article  Google Scholar 

  45. Murase T, Kume N, Korenaga R, Ando J, Sawamura T, Masaki T, et al. Fluid shear stress transcriptionally induces lectin-like oxidized LDL receptor-1 in vascular endothelial cells. Circ Res. 1998;83:328–33.

    PubMed  CAS  Google Scholar 

  46. Li DY, Zhang YC, Philips MI, Sawamura T, Mehta JL. Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res. 1999;84:1043–9.

    PubMed  CAS  Google Scholar 

  47. Hofnagel O, Luechtenborg B, Stolle K, Lorkowski S, Eschert H, Plenz G, et al. Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2004;24:1789–95.

    Article  PubMed  CAS  Google Scholar 

  48. Nagase M, Ando K, Nagase T, Kaname S, Sawamura T, Fujita T. Redox-sensitive regulation of LOX-1 gene expression in vascular endothelium. Biochem Biophys Res Commun. 2001;281:720–5.

    Article  PubMed  CAS  Google Scholar 

  49. Li L, Roumeliotis N, Sawamura T, Renier G. C-reactive protein enhances LOX-1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction. Circ Res. 2004;95:877–83.

    Article  PubMed  CAS  Google Scholar 

  50. Minami M, Kume N, Kataoka H, Morimoto M, Hayashida K, Sawamura T, et al. Transforming growth factor-beta (1) increases the expression of lectin-like oxidized low-density lipoprotein receptor-1. Biochem Biophys Res Commun. 2000;272:357–61.

    Article  PubMed  CAS  Google Scholar 

  51. Tan KCB, Shiu SWM, Wong Y, Leng L, Bucala R. Soluble lectin-like oxidized low density lipoprotein receptor-1 in type 2 diabetes mellitus. J Lipid Res. 2008;49:1438–44.

    Article  PubMed  CAS  Google Scholar 

  52. Li L, Sawamura T, Renier G. Glucose enhances human macrophage LOX-1 expression: role for LOX-1 in glucose-induced macrophage foam cell formation. Circ Res. 2004;94:892–901.

    Article  PubMed  CAS  Google Scholar 

  53. Navarra T, Turco SD, Berti S, Basta G. The lectin-like oxidized low-density lipoprotein receptor-1 and its soluble form: catdiovascular inplications. J Atheroscler Thromb. 2010;17:317–31.

    Article  PubMed  CAS  Google Scholar 

  54. Kamezaki F, Yamashita K, Tasaki H, Kume N, Mitsuoka H, Kita T, et al. Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 correlates with oxidative stress markers in stable coronary artery disease. Int J Cardiol. 2009;134:285–7.

    Article  PubMed  Google Scholar 

  55. Hayashida K, Kume N, Murase T, Minami M, Nakagawa D, Inada T, et al. Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are elevated in acute coronary syndrome: a novel marker for early diagnosis. Circulation. 2005;112:812–8.

    Article  PubMed  CAS  Google Scholar 

  56. Renier G, Maingrette F, Li L. Diabetic vasculopathy and the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Curr Diabetes Rev. 2007;3:103–10.

    Article  CAS  Google Scholar 

  57. Brinkley TE, Kume N, Mitsuoka H, Phares DA, Hagberg JM. Elevated soluble lectin-like oxidized LDL receptor 1 (LOX-1) levels in obese postmenopausal women. Obesity (Silver Spring). 2008;16:1454–6.

    Article  CAS  Google Scholar 

  58. Kosaka H, Yoneyama H, Zhang L, Fujii S, Yamamoto A, Igarashi J. Induction of LOX-1 and iNOS expressions by ischemia-reperfusion of rat kidney and the opposing effect of L-arginine. FASEB J. 2003;17:636–43.

    Article  PubMed  CAS  Google Scholar 

  59. Bräsen JH, Nieminen-Kelhä M, Markmann D, Malle E, Schneider W, Neumayer HH, et al. Lectin-like oxidized low-density lipoprotein (LDL) receptor (LOX-1)-mediated pathway and vascular oxidative injury in older-age rat renal transplants. Kidney Int. 2005;67:1583–94.

    Article  PubMed  Google Scholar 

  60. Hyodo Y, Miyake H, Kondo Y, Fujisawa M. Downregulation of lectin-like oxidized low-density lipoprotein receptor-1 after ischemic preconditioning in ischemia-reperfused rat kidneys. Urology. 2009;73:906–10.

    Article  PubMed  Google Scholar 

  61. Hu C, Kang BY, Megyesi J, Kaushal GP, Safirstein RL, Mehta JL. Deletion of LOX-1 attenuates renal injury following angiotensin II infusion. Kidney Int. 2009;76:521–7.

    Article  PubMed  CAS  Google Scholar 

  62. Chen X, Zhang T, Du G. Advanced glycation end products serve as ligands for lectin-like oxidized low-density lipoprotein receptor-1(LOX-1): biochemical and binding characterizations assay. Cell Biochem Funct. 2008;26:760–70.

    Article  PubMed  CAS  Google Scholar 

  63. Jono T, Miyazaki A, Nagai R, Sawamura T, Kitamura T, Horiuchi S. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) serves as an endothelial receptor for advanced glycation end products (AGE). FEBS Lett. 2002;511:170–4.

    Article  PubMed  CAS  Google Scholar 

  64. Iwashima Y, Eto M, Hata A, Kaku K, Horiuchi S, Ushikubi F, et al. Advanced glycation end products-induced gene expression of scavenger receptors in cultured human monocyte-derived macrophages. Biochem Biophys Res Commun. 2000;277:368–80.

    Article  PubMed  CAS  Google Scholar 

  65. Shiu SWM, Tan KCB, Wang Y, Leng L, Bucala R. Glycoxidized LDL increases lectin-like oxidized low density lipoprotein receptor-1 in diabetes mellitus. Atherosclerosis. 2009;203:522–7.

    Article  PubMed  CAS  Google Scholar 

  66. Taye A, Saad AH, Kumar AH, Morawietz H. Effect of apocynin on NADPH oxidase-mediated oxidative stress-LOX-1-eNOS pathway in human endothelial cells exposed to high glucose. Eur J Pharmacol. 2010;627:42–8.

    Article  PubMed  CAS  Google Scholar 

  67. Maingrette F, Renier G. Linoleic acid increases lectin-like oxidized LDL receptor-1 (LOX-1) expression in human aortic endothelial cells. Diabetes. 2005;54:1506–13.

    Article  PubMed  CAS  Google Scholar 

  68. Li D, Williams V, Liu L, Chen H, Sawamura T, Romeo F, et al. Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia-reperfusion and its role in determination of apoptosis and left ventricular dysfunction. J Am Coll Cardiol. 2003;41:1048–55.

    Article  PubMed  CAS  Google Scholar 

  69. Hu C, Chen J, Dandapat A, Fujita Y, Inoue N, Kawase Y, et al. LOX-1 abrogation reduces myocardial ischemia-reperfusion injury in mice. J Mol Cell Cardiol. 2008;44:76–83.

    Article  PubMed  Google Scholar 

  70. Hu C, Dandapat A, Chen J, Fujita Y, Inoue N, Kawase Y, et al. LOX-1 deletion alters signals of myocardial remodeling immediately after ischemia-reperfusion. Cardiovasc Res. 2007;76:292–302.

    Article  PubMed  CAS  Google Scholar 

  71. Andersson C, Gislason GH, Jørgensen CH, Hansen PR, Vaag A, Sørensen R. et al. Diabetes Res Clin Pract: Comparable long-term mortality risk associated with individual sulfonylureas in diabetes patients with heart failure; 2011 Aug 8 [Epub ahead of print].

    Google Scholar 

  72. Smirnova IV, Sawamura T, Goligorsky MS. Upregulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in endothelial cells by nitric oxide deficiency. Am J Physiol Renal Physiol. 2004;287:F25–32.

    Article  PubMed  CAS  Google Scholar 

  73. Kelly KJ, Dominguez JH. Treatment of the post-ischaemic inflammatory syndrome of diabetic nephropathy. Nephrol Dial Transplant. 2010;25:3204–12.

    Article  PubMed  CAS  Google Scholar 

  74. Yamamoto N, Toyoda M, Abe M, Kobayashi T, Kobayashi K, Kato M, et al. Lectin-like oxidized LDL receptor-1 (LOX-1) expression in the tubulointerstitial area likely plays an important role in human diabetic nephropathy. Intern Med. 2009;48:189–94.

    Article  PubMed  Google Scholar 

  75. Zhang M, Gao X, Wu J, Liu D, Cai H, Fu L, et al. Oxidized high-density lipoprotein enhances inflammatory activity in rat mesangial cells. Diabetes Metab Res Rev. 2010;26:455–63.

    Article  PubMed  CAS  Google Scholar 

  76. Futrakul N, Futrakul P. Vascular homeostasis and angiogenesis determine therapeutic effectiveness in type 2 diabetes. Int J Vasc Med. Epub 2011 May 24.

  77. Dominguez JH, Mehta JL, Li D, Wu P, Kelly KJ, Packer CS, et al. Anti-LOX-1 therapy in rats with diabetes and dyslipidemia: ablation of renal vascular and epithelial manifestations. Am J Physiol Renal Physiol. 2008;294:F110–9.

    Article  PubMed  CAS  Google Scholar 

  78. Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF heart protection study of cholesterol lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361:2005–16.

    Article  PubMed  Google Scholar 

  79. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364:685–96.

    Article  PubMed  CAS  Google Scholar 

  80. Li DY, Chen HJ, Mehta JL. Statins inhibit oxidized-LDL-mediated LOX-1 expression, uptake of oxidized-LDL and reduction in PKB phosphorylation. Cardiovasc Res. 2001;52:130–5.

    Article  PubMed  CAS  Google Scholar 

  81. Yu YH, Wang Y, Dong B, Sun SZ, Chen Y, Meng XH, et al. Fluvastatin prevents renal injury and expression of lectin-like oxidized low-density lipoprotein receptor-1 in rabbits with hypercholesterolemia. Chin Med J (Engl). 2005;118:621–6.

    CAS  Google Scholar 

  82. Khaidakov M, Wang W, Khan JA, Kang BY, Hermonat PL, Mehta JL. Statins and angiogenesis: is it about connections? Biochem Biophys Res Commun. 2009;387:543–7.

    Article  PubMed  CAS  Google Scholar 

  83. Costa J, Borges M, David C, Vaz CA. Efficacy of lipid lowering drug treatment for diabetic and non-diabetic patients: meta-analysis of randomised controlled trials. BMJ. 2006;332:1115–24.

    Article  PubMed  CAS  Google Scholar 

  84. Mehta J, Hu B, Chen J, Li D. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation. Arterioscler Thromb Vasc Biol. 2003;23:2203–8.

    Article  PubMed  CAS  Google Scholar 

  85. Chiba Y, Ogita T, Ando K, Fujita T. PPARgamma ligands inhibit TNF-alpha-induced LOX-1 expression in cultured endothelial cells. Biochem Biophys Res Commun. 2001;286:541–6.

    Article  PubMed  CAS  Google Scholar 

  86. Li L, Sawamura T, Renier G. Glucose enhances endothelial LOX-1 expression role for LOX-1 in glucose-induced human monocyte adhesion to endothelium. Diabetes. 2003;52:1843–50.

    Article  PubMed  CAS  Google Scholar 

  87. Wang L, Zhang L, Yu Y, Wang Y, Niu N. The protective effects of taurine against early renal injury in STZ-induced diabetic rats, correlated with inhibition of renal LOX-1-mediated ICAM-1 expression. Ren Fail. 2008;30:763–71.

    Article  PubMed  CAS  Google Scholar 

  88. Ouslimani N, Mahrouf M, Peynet J, Bonnefont-Rousselot D, Cosson C, Legrand A, et al. Metformin reduces endothelial cell expression of both the receptor for advanced glycation end products and lectin-like oxidized receptor 1. Metabolism. 2007;56:308–13.

    Article  PubMed  CAS  Google Scholar 

  89. Li L, Renier G. The oral anti-diabetic agent, gliclazide, inhibits oxidized LDL-mediated LOX-1 expression, metalloproteinase-9 secretion and apoptosis in human aortic endothelial cells. Atherosclerosis. 2009;204:40–6.

    Article  PubMed  CAS  Google Scholar 

  90. Rudijanto A. Calcium channel blocker (diltiazem) inhibits apoptosis of vascular smooth muscle cell exposed to high glucose concentration through lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) pathway. Acta Med Indones. 2010;42:59–65.

    PubMed  Google Scholar 

  91. Yamagata K, Miyashita A, Chino M, Matsufuji H. Apigenin inhibits tumor necrosis factor alpha plus high glucose-induced LOX-1 expression in human endothelial cells. Microvasc Res. 2011;81:60–7.

    Article  PubMed  CAS  Google Scholar 

  92. Mehta JL, Chen J, Yu F, Li DY. Aspirin inhibits ox-LDL-mediated LOX-1 expression and metalloproteinase-1 in human coronary endothelial cells. Cardiovasc Res. 2004;64:243–9.

    Article  PubMed  CAS  Google Scholar 

  93. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293:1673–7.

    Article  PubMed  CAS  Google Scholar 

  94. Khaidakov M, Szwedo J, Mitra S, Ayyadevara S, Dobretsov M, Lu J, et al. Antiangiogenic and antimitotic effects of aspirin in hypoxia–reoxygenation modulation of the LOX-1-NADPH oxidase axis as a potential mechanism. J Cardiovasc Pharmacol. 2010;56:635–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Specialized Research Fund for the Doctoral Program of Higher Education, Ministry of Education of China (No. 20100162110058 to CPH), the Department of Veterans Affairs, Washington, DC, USA (JLM) and the Arkansas Bioventures Institute, Little Rock, AR, USA (JLM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changping Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, M., Mehta, J.L., Zhang, W. et al. LOX-1, Oxidative Stress and Inflammation: A Novel Mechanism for Diabetic Cardiovascular Complications. Cardiovasc Drugs Ther 25, 451–459 (2011). https://doi.org/10.1007/s10557-011-6342-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-011-6342-4

Key words

Navigation