Skip to main content

Advertisement

Log in

LOX-1 Transcription

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The importance of the lectin-like oxidized LDL receptor (LOX-1) gene in cardiovascular and other diseases is slowly being revealed. LOX-1 gene expression appears to be a “canary in a coal mine” for atherogenesis, being strongly up-regulated early on in a number of cell types when they are activated, and predicting the sites of future disease. From this early time point the LOX-1 protein often participates in the disease process itself. While gene/protein expression can be regulated on a multiplicity of levels, the most basic and important mode of regulation is usually transcriptional. There are very few studies on the transcriptional regulation of the human LOX-1 promoter; fewer still on definitive mapping of the transcription factors involved. It is known that a wide variety of stimuli up-regulate LOX-1, usually/probably on the transcriptional level. Angiotensin II (Ang II) is one important regulator of renin-angiotensin system and stimulator LOX-1. Ang II is known to up-regulate LOX-1 transcription through an NF-kB motif located at nt −2158. Oxidized low density lipoprotein (ox-LDL) is another important cardiovascular regulator, particularly of atherosclerotic disease, and a strong stimulator of LOX-1. Ox-LDL is known to up-regulate LOX-1 transcription through an Oct-1 motif located at nt −1556. The subsequent enhanced LOX-1 receptor numbers and their binding by ox-LDL ligand triggers a positive feedback loop, increasing further LOX-1 expression, with a presently unknown regulatory governor. The Oct-1 gene also has its own Oct-1-driven positive feedback loop, which likely also contributes to LOX-1 up-regulation. There is also data which suggests the involvement of the transcription factor AP-1 during stimulation with Phorbol 12-myristate acetate. While the importance of NF-κB as a transcriptional regulator of cardiovascular-relevant genes is well known, the importance of Oct-1 is not. Data suggests that Oct-1-mediated up-regulation of transcription is an early event in the stimulation of LOX-1 by ox-LDL. Yet Oct-1 also down-regulates cardiovascular-relevant genes by suppressing NF-κB transactivation. Thus, Oct-1 is presently somewhat of an enigma, up-regulating and down-regulating genes seemingly at random without an overall theme (with the exception of cell cycle). Yet the up-regulation of LOX-1 by ox-LDL is a very important event in atherogenesis (both early and late) and Oct-1 is, therefore, an important transcriptional gatekeeper of this important atherogenic trigger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh BM, Mehta J. L. Interactions between the renin-angiotensin systemand dyslipidemia: relevance in the therapy of hypertension and coronary heart disease. Arch Intern Med. 2003;163:1296–304.

    Article  PubMed  CAS  Google Scholar 

  2. Naderi GA, Asgary S, Shirvany H. Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Mol Cell Biochem. 2003;246:193–6.

    Article  PubMed  CAS  Google Scholar 

  3. Mehta JL, Li D. Identification and autoregulation of receptor for OX-LDL in cultured human coronary artery endothelial cells. Biochem Biophys Res Commun. 1998;248:511–4.

    Article  PubMed  CAS  Google Scholar 

  4. Sawamura T, Kume N, Aoyama T, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature. 1997;386:73–7.

    Article  PubMed  CAS  Google Scholar 

  5. Ogura S, Kakino A, Sato Y, Fujita Y, Iwamoto S, Otsui K, et al. LOX-1: the multifunctional receptor underlying cardiovascular dysfunction. Circ J. 2009;73:1993–9.

    Article  PubMed  CAS  Google Scholar 

  6. Oka K, Sawamura T, Kikuta K, Itokawa S, Kume N, Kita T, et al. Lectin-like oxidized lowdensity lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc Natl Acad Sci USA. 1998;95:9535–40.

    Article  PubMed  CAS  Google Scholar 

  7. Kakutani M, Masaki T, Sawamura T. A platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1. Proc Natl Acad Sci USA. 2000;97:360–4.

    Article  PubMed  CAS  Google Scholar 

  8. Honjo M, Nakamura K, Yamashiro K, Kiryu J, Tanihara H, McEvoy LM, et al. Lectin-like oxidized LDL receptor-1 is a cell-adhesion molecule involvedin endotoxin-induced inflammation. Proc Natl Acad Sci USA. 2003;100:1274–9.

    Article  PubMed  CAS  Google Scholar 

  9. Fujita Y, Kakino A, Nishimichi N, Yamaguchi S, Sato Y, Machida S, et al. Oxidized LDL receptor LOX-1 binds to C-reactive protein and mediates its vascular effects. Clin Chem. 2009;55:285–94.

    Article  PubMed  CAS  Google Scholar 

  10. Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F, et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed highcholesterol diet. Circ Res. 2007;100:1634–42.

    Article  PubMed  CAS  Google Scholar 

  11. Inoue K, Arai Y, Kurihara H, Kita T, Sawamura T. Overexpression of lectin-like oxidized low-density lipoprotein receptor-1 induces intramyocardial vasculopathy in apolipoprotein E-null mice. Circ Res. 2005;97:176–84.

    Article  PubMed  CAS  Google Scholar 

  12. Nakagawa T, Akagi M, Hoshikawa H, Chen M, Yasuda T, Mukai S, et al. Lectin-like oxidized low-density lipoprotein receptor 1 mediates leukocyte infiltration and articular cartilage destruction in rat zymosan-induced arthritis. Arthritis Rheum. 2002;46:2486–94.

    Article  PubMed  CAS  Google Scholar 

  13. Asplund K. Antioxidant vitamins in the prevention of cardiovascular disease: a systematic review. J Intern Med. 2002;251:372–92.

    Article  PubMed  CAS  Google Scholar 

  14. Kataoka K, Hasegawa K, Sawamura T, Fujita M, Yanazume T, Iwai-Kanai E, et al. LOX-1 pathway affects the extent of myocardial ischemiareperfusion injury. Biochem Biophys Res Commun. 2003;300:656–60.

    Article  PubMed  CAS  Google Scholar 

  15. Hinagata J, Kakutani M, Fujii T, Naruko T, Inoue N, Fujita Y, et al. Oxidized LDL receptor LOX-1 is involved in neointimal hyperplasia after balloon arterial injury in a rat model. Cardiovasc Res. 2006;69:263–71.

    Article  PubMed  CAS  Google Scholar 

  16. Kelly KJ, Wu P, Patterson CE, Temm C, Dominguez JH. LOX-1 and inflammation: a new mechanismfor renal injury in obesity and diabetes. Am J Physiol- Renal Physiology. 2008;294:136–45.

    Google Scholar 

  17. Kobayashi N, Hara K, Tojo A, et al. Eplerenone shows renoprotective effect by reducing LOX-1–mediated adhesion molecule, PKC[epsilon]-MAPK-p90RSK, and rho-kinase pathway. Hypertension. 2005;45:538–44.

    Article  PubMed  CAS  Google Scholar 

  18. Inoue N, Okamura T, Kokubo Y, et al. LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clin Chem. 2010;56:550–8.

    Article  PubMed  CAS  Google Scholar 

  19. Kume N, Mitsuoka H, Hayashida K, Tanaka M, Kominami G, Kita T. Soluble lectin-like oxidized LDL receptor-1 (sLOX-1) as a sensitive and specific biomarker for acute coronary syndrome–comparison with other biomarkers. J Cardiol. 2010;56:159–65.

    Article  PubMed  Google Scholar 

  20. Aoyama T, Sawamura T, Furutani Y, Matsuoka R, Yoshida MC, Fujiwara H, et al. Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. Biochem J. 1999;339:177–84.

    Article  PubMed  CAS  Google Scholar 

  21. Chen J, Liu Y, Liu H, Hermonat PL, Mehta JL. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) transcriptional regulation by Oct-1 in human endothelial cells: implications for atherosclerosis. Biochemical J. 2006;393:255–65.

    Article  CAS  Google Scholar 

  22. Chen J, Liu Y, Liu H, Hermonat PL, Mehta JL. Molecular dissection of angiotensin II-activated human LOX-1 promoter. Arterioscler Thromb Vasc Biol. 2006;26:1163–8.

    Article  PubMed  CAS  Google Scholar 

  23. Cister (Cis-element Cluster Finder): http://zlab.bu.edu/~mfrith/cister.shtml

  24. Li D, Chen H, Romeo F, Sawamura T, Mehta JL. Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1. J Pharmacol Exp Ther. 2002;302:601–5.

    Article  PubMed  CAS  Google Scholar 

  25. Aoyama T, Sawamura T, Furutani Y, Matsuoka R, Fujiwara H, Masaki T. Structure and chromosomal assignment of the human lectin-like oxidized low-densitylipoprotein receptor-1 (LOX-1) gene. Biochem J. 1999;39:177–84.

    Article  Google Scholar 

  26. Yamanaka S, Zhang XY, Miura K, Kim S, Iwao H. The human gene encoding the lectin-type oxidized LDL receptor (OLR1) is a novel member of the natural killer gene complex with a unique expression profile. Genomics. 1998;54:191–9.

    Article  PubMed  CAS  Google Scholar 

  27. Li D, Mehta JL. Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol. 2000;20:1116–22.

    Article  PubMed  CAS  Google Scholar 

  28. Lin S-J, Shyue SK, Liu PL, et al. Adenovirus-mediated overexpression of catalase attenuates ox-LDL-induced apoptosis in human aortic endothelial cells via AP-1 an c-Jun N-terminal kinase/extra cellular signal-regulated kinase mitogen-activated protein kinase pathways. J Molec Cell Cardiol. 2004;36:129–39.

    Article  CAS  Google Scholar 

  29. Grunwald S, Speer A. Efficient transfection of primary human skeletal myoblasts using FuGENE_ HD transfection reagent. Biochemica. 2007;3:26–7.

    Google Scholar 

  30. Thum T, Borlak J. LOX-1 receptor blockade abrogates 0xLDL-induced oxidative DNA damage and prevents activation of the transcriptional repressor Oct-1 in human coronary arterial endothelium. J Biol Chem. 2008;283:19456–64.

    Article  PubMed  CAS  Google Scholar 

  31. Pankratova EV, Polianovski OL. cis-Elements in the 5'-region of the Oct-1 gene: Possibilities of autoregulation. Mol Biol (Mosk). 1998;32:970–5.

    CAS  Google Scholar 

  32. Pankratova EV, Polanovsky OL. Oct-1 promoter region contains octamer sites and TAAT motifs recognized by Oct proteins. FEBS Lett. 1998;426:81–5.

    Article  PubMed  CAS  Google Scholar 

  33. Pankratova EV, Sytina EV, Luchina NN, Krivega IV. The regulation of the Oct-1 gene transcription is mediated by two promoters. Immunol Lett. 2003;88:15–20.

    Article  PubMed  CAS  Google Scholar 

  34. Pankratova EV. Alternative promoters in expression of genetic information. Molec Biol. 2008;42:422–33.

    CAS  Google Scholar 

  35. Yambe Y, Shimamoto A, Goto M, Yokota J, Sugawara M, Furuichi Y. Sp1-mediated transcription of the Werner helicase gene is modulated by Rb and p53. Molec Cell Biol. 1998;18:6191–200.

    Google Scholar 

  36. Segil N, Roberts SB, Heintz N. Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science. 1991;254:1814–6.

    Article  PubMed  CAS  Google Scholar 

  37. Magne S, Caron S, Charon M, Rouyez MC, Dusanter-Fourt I. STAT5 and Oct-1 form a stable complex that modulates cyclin D1 expression. Mol Cell Biol. 2003;23:8934–45.

    Article  PubMed  CAS  Google Scholar 

  38. dela Paz NG, Simeonidis S, Leo C, Rose DW, Collins T. Regulation of NF-κB-dependent gene expression by the POU domain transcription factor Oct-1. J Biol Chem. 2007;282:8424–34.

    Article  Google Scholar 

  39. Tantin D, Schild-Poulter C, Wang V, et al. The octamer binding transcription factor Oct-1 is a stress sensor. Can Res. 2005;65:10750–8.

    Article  CAS  Google Scholar 

  40. Morawietz H, Rueckschloss U, Niemann B, Duerrschmidt N, Galle J, Hakim K, et al. Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein. Circulation. 1999;100:899–902.

    PubMed  CAS  Google Scholar 

  41. Li DY, Zhang YC, Philips MI, Sawamura T, Mehta JL. Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res. 1999;84:1043–9.

    PubMed  CAS  Google Scholar 

  42. Costanzo A, Moretti F, Burgio VL, Bravi C, Guido F, Levrero M, et al. Endothelial activation by angiotensin II through NFkappaB and p38 pathways: Involvement of NFkappaB-inducible kinase (NIK), free oxygen radicals, and selective inhibition by aspirin. J Cell Physiol. 2003;195:402–10.

    Article  PubMed  CAS  Google Scholar 

  43. Mehta JL, Hu B, Chen J, Li D. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation. Arterioscler Thromb Vasc Biol. 2003;23:2203–8.

    Article  PubMed  CAS  Google Scholar 

  44. Wu L, Iwai M, Li Z, Shiuchi T, Min LJ, Cui TX, et al. Regulation of inhibitory protein-kappaB and monocyte chemoattractant protein-1 by angiotensin II type 2 receptor-activated Src homology protein tyrosine phosphatase-1 in fetal vascular smooth muscle cells. Mol Endocrinol. 2004;18:666–78.

    Article  PubMed  CAS  Google Scholar 

  45. Rouet-Benzineb P, Gontero B, Dreyfus P, Lafuma C. Angiotensin II induces nuclear factor-kappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway. J Mol Cell Cardiol. 2000;32:1767–78.

    Article  PubMed  CAS  Google Scholar 

  46. Ueno T, Fukuda N, Tsunemi A, et al. A novel gene silencer, pyrrole-imidazole polyamide targeting human lectin-like oxidized low-density lipoprotein receptor-1 gene improves endothelial cell function. J Hypertension. 2009;27:508–18.

    Article  CAS  Google Scholar 

  47. Kuprash DV, Osipovich OA, Pokholok DK, et al. Functional analysis of the lymphotoxin-beta promoter. Sequence requirements for PMA activation. J Immunol. 1996;156:2465–72.

    PubMed  CAS  Google Scholar 

  48. Reddy SP, Adiseshaiah P, Shapiro P, Vuong H. BMK1 (ERK5) regulates squamous differentiation marker SPRR1B transcription in Clara-like H441 cells. Am J Respir Cell Mol Biol. 2002;27:64–70.

    PubMed  Google Scholar 

  49. Fowkes RC, King P, Burrin JM. Regulation of human glycoprotein hormone alpha-subunit gene transcription in LbetaT2 gonadotropes by protein kinase C and extracellular signal-regulated kinase 1/2. Biol Reprod. 2002;67:725–34.

    Article  PubMed  CAS  Google Scholar 

  50. Tsou JH, Chang KY, Wang WC, Tseng JT, Su WC, Hung LY, et al. Nucleolin regulates c-Jun/Sp1-dependent transcriptional activation of cPLA2alpha in phorbol ester-treated non-small cell lung cancer A549 cells. Nucleic Acids Res. 2008;36:217–27.

    Article  PubMed  CAS  Google Scholar 

  51. Taye A, Sawamura T, Morawietz H. Aldosterone augments LOX-1-mediated low-density lipoprotein uptake in human umbilical artery endothelial cells. Pharmacol Rep. 2010;62:311–8.

    PubMed  CAS  Google Scholar 

  52. Apostolov EO, Shah SV, Ray D, Basnakian AG. Scavenger receptors of endothelial cells mediate the uptake and cellular proatherogenic effects of carbamylated LDL. Arterioscler Thromb Vasc Biol. 2009;29:1622–30.

    Article  PubMed  CAS  Google Scholar 

  53. Li L, Sawamura T, Renier G. Glucose enhances endothelial LOX-1 expression: role for LOX-1 in glucose-induced human monocyte adhesion to endothelium. Diabetes. 2003;52:1843–50.

    Article  PubMed  CAS  Google Scholar 

  54. Chirathaworn C, Pongpanich A, Poovorawan Y. Herpes simplex virus 1 induced LOX-1 expression in an endothelial cell line, ECV 304. Viral Immunol. 2004;17:308–14.

    Article  PubMed  CAS  Google Scholar 

  55. Tanimoto A, Murata Y, Nomaguchi M, Kimura S, Arima N, Hamada T, et al. Histamine increases the expression of LOX-1 via H2 receptor in human THP-1 cells. FEBS Letters. 2001;508:345–9.

    Article  PubMed  CAS  Google Scholar 

  56. Nagase M, Kaname S, Nagase T, Wang G, Ando K, Sawamura T, et al. Expression of LOX-1, an oxidized low-density lipoprotein receptor, in experimental hypertensive glomerulosclerosis. J Am Soc Nephrol. 2000;11:1826–36.

    PubMed  CAS  Google Scholar 

  57. Hofnagel O, Luechtenborg B, Stolle K, Lorkowski S, Eschert H, Plenz G, et al. Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2004;24:1789–95.

    Article  PubMed  CAS  Google Scholar 

  58. Higuchi S, Tanimoto A, Arima N, et al. Effects of histamine and interleukin-4 synthesized in arterial intima on phagocytosis by monocytes/macrophages in relation to atherosclerosis. FEBS Lett. 2001;505:217–22.

    Article  PubMed  CAS  Google Scholar 

  59. Aoyama T, Chen M, Fujiwara H, Masaki T, Sawamura T. LOX-1 mediates lysophosphatidylcholine-induced oxidized LDL uptake in smooth muscle cells. FEBS Lett. 2000;467:217–20.

    Article  PubMed  CAS  Google Scholar 

  60. Ishiyama J, Taguchi R, Akasaka Y, Shibata S, Ito M, Nagasawa M, et al. Unsaturated FAs prevent palmitate-induced LOX-1 induction via inhibition of ER stress in macrophages. J Lipid Res. 2011;52:299–307.

    Article  PubMed  CAS  Google Scholar 

  61. Nagase M, Hirose S, Fujita T. Unique repetitive sequence and unexpected regulation of expression of rat endothelial receptor for oxidized low-density lipoprotein (LOX-1). Biochem J. 1998;330:1417–22.

    PubMed  CAS  Google Scholar 

  62. Chiba Y, Ogita T, Ando K, Fujita T. PPARgamma ligands inhibit TNF-alpha-induced LOX-1 expression in cultured endothelial cells. Biochem Biophys Res Commun. 2001;286:541–6.

    Article  PubMed  CAS  Google Scholar 

  63. Bao M, Lou Y. Flavonoids from seabuckthorn protect endothelial cells (EA.hy926) from oxidized low-density lipoprotein induced injuries via regulation of LOX-1 and eNOS expression. J Cardiovasc Pharmacol. 2006;48:834–41.

    Article  PubMed  CAS  Google Scholar 

  64. Mehta JL, Hu B, Chen J, Li D. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation. Arterioscler Thromb Vasc Biol. 2003;23:2203–8.

    Article  PubMed  CAS  Google Scholar 

  65. Kang BY, Mehta JL. Rosuvastatin attenuates Ang II–mediated cardiomyocyte hypertrophy via inhibition of LOX-1. J Cardiovasc Pharmacol Ther. 2009;14:283–91.

    Article  PubMed  CAS  Google Scholar 

  66. Stein S, Lohmann C, Schäfer N, Hofmann J, Rohrer L, Besler C, et al. SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur Heart J. 2010;31:2301–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Hermonat.

Additional information

This study was funded by VA Merit Review and AHA grants to PLH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermonat, P.L., Zhu, H., Cao, M. et al. LOX-1 Transcription. Cardiovasc Drugs Ther 25, 393–400 (2011). https://doi.org/10.1007/s10557-011-6322-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-011-6322-8

Key words

Navigation