Skip to main content

Advertisement

Log in

Protective Effects of Lycopene against H2O2-Induced Oxidative Injury and Apoptosis in Human Endothelial Cells

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Oxidative stress is considered to be a major factor contributing to damage of endothelial cells, and is an important component of the etiology of atherosclerosis. In this study, we investigated the effects of lycopene on the oxidative injury and apoptosis of endothelial cells induced by H2O2, and the effects of lycopene on the expression of p53, caspase-3 mRNA in injured cells.

Methods

In the H2O2 group, endothelial cells were incubated with 400 µM H2O2. In lycopene groups, endothelial cells were pretreated with different concentrations of lycopene then exposed to 400 µM H2O2. In the drug control group, cells were pretreated with probucol then incubated with H2O2. The effects of different concentrations of lycopen on the extent of oxidative injury to the cells were evaluated. The growth conditions and morphological changes of the cells were observed with an inverted microscope. The level of oxidative injury to cells was determined by measuring malondialdehyde (MDA) levels; the viability of cells was detected by MTT assays; the nuclear morphology of cells was observed by Hoechst staining; the apoptotic ratio of cells was measured by flow cytometry; and the expressions of p53 and caspase-3 mRNA were investigated by RT-PCR.

Results

Lycopene improved the shape of contracted endothelial cells induced by H2O2 injury, and diminished the level of MDA produced following oxidative injury of cells. The viability of cells increased, and the number of cells characterized by apoptotic nuclear morphology decreased in groups treated with lycopene. Similarly, lycopene significantly diminished the apoptosis ratio of oxidative injured cells, and also downregulated the expressions of p53 and caspase-3 mRNA induced by H2O2. Lycopene and probucol displayed similar protective effects on endothelial cells.

Conclusions

Lycopene can decrease the oxidative injury of endothelial cells induced by H2O2, can attenuate the expression of p53 and caspase-3 mRNA in injured cells, and can diminish the apoptosis of injured cells. These findings possibly explain in part why lycopene can prevent atherosclerotic cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381–478.

    Article  CAS  PubMed  Google Scholar 

  2. Gopaul NK, Anggard EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J. Plasma 8-epi-PGF2 alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett. 1995;368:225–9.

    Article  CAS  PubMed  Google Scholar 

  3. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86:494–501.

    CAS  PubMed  Google Scholar 

  4. Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y, et al. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med. 1995;332:1198–203.

    Article  CAS  PubMed  Google Scholar 

  5. Aoki M, Nata T, Morishita R, Matsushita H, Nakagami H, Yamamoto K, et al. Endothelial apoptosis induced by oxidative stress through activation of NF-kB. Hypertension. 2001;38:48–55.

    CAS  PubMed  Google Scholar 

  6. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994;30:1431–8.

    Article  Google Scholar 

  7. Morel DW, Hessler JR, Chisolm GM. Low-density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res. 1983;24:1070–6.

    CAS  PubMed  Google Scholar 

  8. Berliner JA, Territo MC, Sevanian A, Romin S, Kim JA, Bamshad B, et al. Minimally modified LDL stimulates monocyte endothelial interaction. J Clin Invest. 1990;85:1260–6.

    Article  CAS  PubMed  Google Scholar 

  9. Hamilton TA, Ma GP, Chisolm GM. Oxidized low-density lipoprotein suppresses the expression of tumor necrosis factor-α mRNA in stimulated murine peritoneal macrophages. J Immunol. 1990;144:2343–50.

    CAS  PubMed  Google Scholar 

  10. Malden LT, Chait A, Raines EW, Ross R. The influence of oxidatively modified low density lipoproteins on expression of platelet-derived growth factor by human monocyte-derived macrophages. J Biol Chem. 1991;266:13901–7.

    CAS  PubMed  Google Scholar 

  11. D’Agnillo F, Wood F, Porras C, Macdonald VW, Alayash AI. Effects of hypoxia and glutathione depletion on hemoglobin- and myoglobin-mediated oxidative stress toward endothelium. Biochim Biophys Acta. 2000;1495:150–9.

    Article  PubMed  Google Scholar 

  12. Samarasinghe DA, Tapner M, Ferrell GC. Role of oxidative stress in hypoxia-reoxygenation injury to cultured rat hepatic sinusoidal endothelial cells. Hepatology. 2000;31:160–5.

    Article  CAS  PubMed  Google Scholar 

  13. Motterlini R, Foresti R, Bassi R, Green CJ. Curcumin, An antioxidant and anti-inflammatory agent, induces hemo oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med. 2000;28:1303–12.

    Article  CAS  PubMed  Google Scholar 

  14. Hashida K, Sasaki K, Makino N. Interactions of nitric oxide and oxygenin cytotoxicity: proliferation and antioxidant enzyme activities of endothelial cells in culture. Free Radic Res. 2000;33:147–56.

    Article  CAS  PubMed  Google Scholar 

  15. Lee YJ, Kang IJ, Bunger R, Kang YH. Mechanisms of pyruvate inhibition of oxidant-induced apoptosis in human endothelial cells. Microvasc Res. 2003;66:91–101.

    Article  CAS  PubMed  Google Scholar 

  16. Bombeli T, Karsan A, Tait JF, Harlan JM. Apoptotic vascular endothelial cells become procoagulant. Blood. 1997;89:2429–42.

    CAS  PubMed  Google Scholar 

  17. Bombeli T, Schwartz BR, Harlan JM. Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets. Blood. 1999;93:3831–8.

    CAS  PubMed  Google Scholar 

  18. Tricot O, Mallat Z, Heymes C, Belmin J, Lesèche G, Tedgui A. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation. 2000;101:2450–3.

    CAS  PubMed  Google Scholar 

  19. Dimmeler S, Hermann C, Zeiher AM. Apoptosis of endothelial cells: contribution to the pathophysiology of atherosclerosis. Eur Cytokine Netw. 1998;9:697–8.

    CAS  PubMed  Google Scholar 

  20. Klipstein Grobusch K, Launer LJ, Geleijnse JM, Boeing H, Hofman A, Witteman JC. Serum carotenoids and atherosclerosis. The Rotterdam Study. Atherosclerosis. 2000;148:49–56.

    Article  CAS  PubMed  Google Scholar 

  21. Rissanen TH, Voutilainen S, Nyyssonen K, Salonen R, Kaplan GA, Salonen JT. Serum lycopene concentrations and carotid atherosclerosis: the Kuopis Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr. 2003;77:133–8.

    CAS  PubMed  Google Scholar 

  22. Rissanen T, Voutilainen S, Nyyssönen K, Salonen JT. Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med (Maywood). 2002;227:900–7.

    CAS  Google Scholar 

  23. Kohlmeier L, Kark JD, Gomez-Gracia E, Martin BC, Steck SE, Kardinaal AF, et al. Lycopene and myocardial infarction risk in the EURAMIC Study. Am J Epidemiol. 1997;146:618–26.

    CAS  PubMed  Google Scholar 

  24. Rao AV. Lycopene, tomatoes, and the prevention of coronary heart disease. Exp Biol Med (Maywood). 2002;227:908–13.

    CAS  Google Scholar 

  25. Heber D, Lu QY. Overview of mechanisms of action of lycopene. Exp Biol Med (Maywood). 2002;227:920–3.

    CAS  Google Scholar 

  26. Luo T, Xia Z. A small dose of hydrogen peroxide enhances tumor necrosis factor-Alpha toxicity in inducing human vascular endothelial cell apoptosis: reversal with propofol. Anesth Analg. 2006;103:110–6.

    Article  CAS  PubMed  Google Scholar 

  27. Aruoma OI, Laughton MJ, Halliwell B. Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem J. 1989;264:863–9.

    CAS  PubMed  Google Scholar 

  28. Gurgul E, Lortz S, Tiedge M, Jörns A, Lenzen S. Mitochondrial catalase overexpression protects insulin-producing cells against toxicity of reactive oxygen species and proinflammatory cytokines. Diabetes. 2004;53:2271–80.

    Article  CAS  PubMed  Google Scholar 

  29. Wilson I, Gillinov AM, Curtis WE, DiNatale J, Burch RM, Gardner TJ, et al. Inhibition of neutrophil adherence improves postischemic ventricular performance of the neonatal heart. Circulation. 1993;88:II372–9.

    CAS  PubMed  Google Scholar 

  30. Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, Garzotto M, McLoughlin M, Gallily R, et al. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med. 1997;186:1831–41.

    Article  CAS  PubMed  Google Scholar 

  31. Aoki M, Morishita R, Matsushita H, Nakano N, Hayashi S, Tomita N, et al. Serum deprivation induced apoptosis accompanied by up-regulation of p53 and bax in human aortic vascular smooth muscle cells. Heart Vessels. 1997;Suppl 12:71–5.

    CAS  PubMed  Google Scholar 

  32. Aoki M, Morishita R, Matsushita H, Hayashi S, Nakagami H, Yamamoto K, et al. Inhibition of the p53 tumor suppressor gene results in growth of human aortic vascular smooth muscle cells: potential role of p53 in the regulation of vascular smooth muscle cells. Hypertension. 1999;34:192–200.

    CAS  PubMed  Google Scholar 

  33. Wang HQ, Quan T, He T, Franke TF, Voorhees JJ, Fisher GJ. Epidermal Growth Factor Receptor-dependent, NF-кB-independent Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway Inhibits Ultraviolet Irradiation-induced Caspases-3, -8, and -9 in Human Keratinocytes. J Biol Chem. 2003;278:45737–45.

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Liu J, Zhan X. Tyrosine phosphorylation of cortactin is required for H2O2-mediated injury of human endothelial cells. J Biol Chem. 2000;275:37187–93.

    Article  CAS  PubMed  Google Scholar 

  35. Hull DS, Green K, Thomas L, Alderman N. Hydrogen peroxide-mediated corneal endothelial damage. Induction by oxygen free radical. Invest Ophthalmol Vis Sci. 1984;25:1246–53.

    CAS  PubMed  Google Scholar 

  36. Schror K, Thiemermann C, Ney P. Protection of the ischemic myocardium from reperfusion injury by prostaglandin E1 inhibition of ischemia-induced neutrophil activation. Naunyn Schmiedebergs Arch Pharmacol. 1988;338:268–74.

    Article  CAS  PubMed  Google Scholar 

  37. Sacks T, Moldow CF, Craddock PR, Bowers TK, Jacob HS. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978;61:1161–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal. 1999;11:1–14.

    Article  CAS  PubMed  Google Scholar 

  39. Mates JM, Sanchez-Jimenez F. Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci. 1999;4:D339–45.

    Article  CAS  PubMed  Google Scholar 

  40. Azzi A, Davies KJ, Kelly F. Free radical biology–terminology and critical thinking. FEBS Lett. 2004;558:3–6.

    Article  CAS  PubMed  Google Scholar 

  41. Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol. 2001;54:176–86.

    Article  CAS  PubMed  Google Scholar 

  42. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol. 2001;280:C719–41.

    CAS  PubMed  Google Scholar 

  43. Gugliesi F, Mondini M, Ravera R, Robotti A, de Andrea M, Gribaudo G, et al. Up-regulation of the interferon-inducible IFI16 gene by oxidative stress triggers p53 transcriptional activity in endothelial cells. J Leukoc Biol. 2005;77:820–9.

    Article  CAS  PubMed  Google Scholar 

  44. Lopez-Ongil S, Torrecillas G, Perez-Sala D, Gonzalez-Santiago L, Rodriguez-Puyol M, Rodriguez-Puyol D. Mechanisms involved in the contraction of endothelial cells by hydrogen peroxide. Free Radic Biol Med. 1999;26:501–10.

    Article  CAS  PubMed  Google Scholar 

  45. Natarajan V, Taher MM, Roehm B, Parinandi NL, Schmid HHO, Kiss Z, et al. Activation of endothelial cell phospholipase-D by hydrogen peroxide and fatty acid hydroperoxide. J Biol Chem. 1993;268:930–7.

    CAS  PubMed  Google Scholar 

  46. Lum H, Malik AB. Regulation of vascular endothelial barrier function. Am J Physiol. 1994;267:L223–41.

    CAS  PubMed  Google Scholar 

  47. Siflinger-Birnboim A, Lum H, Del Vecchio PJ, Malik AB. Involvement of Ca2+ in the H2O2-induced increase in endothelial permeability. Am J Physiol. 1996;270:L973–8.

    CAS  PubMed  Google Scholar 

  48. Kevil CG, Oshima T, Alexander B, Coe LL, Alexander JS. H2O2-mediated permeability: role of MAPK and occluding. Am J Physiol Cell Physiol. 2000;279:C21–30.

    CAS  PubMed  Google Scholar 

  49. Andersson Y, Le H, Juell S, Fodstad Ø. AMP-activated protein kinase protects against anti-epidermal growth factor receptor-Pseudomonas exotoxin A immunotoxin-induced MA11 breast cancer cell death. Mol Cancer Ther. 2006;5:1050–9.

    Article  CAS  PubMed  Google Scholar 

  50. Vogelstein B, Kinzler KW. P53 function and dysfunction. Cell. 1992;70:523–6.

    Article  CAS  PubMed  Google Scholar 

  51. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6.

    Article  CAS  PubMed  Google Scholar 

  52. Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, et al. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell. 1994;78:703–11.

    Article  CAS  PubMed  Google Scholar 

  53. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF 1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.

    Article  CAS  PubMed  Google Scholar 

  54. Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med. 2000;29:323–33.

    Article  CAS  PubMed  Google Scholar 

  55. Marston NJ, Crook T, Vousden KH. Interaction of p53 with MDM2 is independent of E6 and does not mediate wild-type transformation suppression function. Oncogene. 1994;9:2707–16.

    CAS  PubMed  Google Scholar 

  56. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12.

    Article  CAS  PubMed  Google Scholar 

  57. Lorenzo E, Ruiz-Ruiz C, Quesada AJ, Hernandez G, Rodriguez A, Lopez-Rivas A, et al. Doxorubicin induces apoptosis and CD95 gene expression in human primary endothelial cells through a p53-dependent mechanism. J Biol Chem. 2002;277:10883–92.

    Article  CAS  PubMed  Google Scholar 

  58. Alves Da Costa C, Mattson MP, Ancolio K, Checler F. The C-terminal fragment of presenilin 2 triggers p53-mediated staurosporine-induced apoptosis, a function independent of the presenilinase-derived N-terminal counterpart. J Biol Chem. 2003;278:12064–9.

    Article  CAS  PubMed  Google Scholar 

  59. Havre PA, O’Reilly S, McCormick JJ, Brash DE. Transformed and tumor-derived human cells exhibit preferential sensitivity to the thiol antioxidants, N-acetyl cysteine and penicillamine. Cancer Res. 2002;62:1443–9.

    CAS  PubMed  Google Scholar 

  60. Hermann C, Zeiher AM, Dimmeler S. Shear stress inhibits H2O2-induced apoptosis of human endothelial cells by modulation of the glutathione redox cycle and nitric oxide synthase. Arterioscler Thromb Vasc Biol. 1997;17:3588–92.

    CAS  PubMed  Google Scholar 

  61. Asada S, Fukuda K, Nishisaka F, Matsukawa M, Hamanisi C. Hydrogen peroxide induces apoptosis of chondmcytes;involvement of calxium ion and extracellular signal regulated protein kinase. Inflamm Res. 2001;50:19–23.

    Article  CAS  PubMed  Google Scholar 

  62. Slee Elizabeth A, Adrain C, Martin SJ. Executioner Caspase-3, -6, and -7 Perform Distinct, Non-redundant Roles during the Demolition Phase of Apoptosis. J Biol Chem. 2001;276:7320–6.

    Article  CAS  PubMed  Google Scholar 

  63. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6.

    Article  CAS  PubMed  Google Scholar 

  64. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999;6:1028–42.

    Article  CAS  PubMed  Google Scholar 

  65. Slee EA, Adrain C, Martin SJ. Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ. 1999;6:1067–74.

    Article  CAS  PubMed  Google Scholar 

  66. Martin SJ, Green DR. Protease activation during apoptosis: death by a thousand cuts? Cell. 1995;82:349–52.

    Article  CAS  PubMed  Google Scholar 

  67. Paran E, Novack V, Engelhard YN, Hazan-Halevy I. The effects of natural antioxidants from tomato extract in treated but uncontrolled hypertensive patients. Cardiovasc Drugs Ther. 2009;23:145–51.

    Article  CAS  PubMed  Google Scholar 

  68. de Leeuw PW, Bast A. Tomato extract for hypertension? Cardiovasc Drugs Ther. 2009;23:107–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by the grants from the national foundation for natural sciences of China (30200103). We thank Dr. XingChun Zheng and Dr. XiaoPing Yan for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangDong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, X., Yang, X., Peng, Y. et al. Protective Effects of Lycopene against H2O2-Induced Oxidative Injury and Apoptosis in Human Endothelial Cells. Cardiovasc Drugs Ther 23, 439–448 (2009). https://doi.org/10.1007/s10557-009-6206-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-009-6206-3

Key words

Navigation