Skip to main content

Advertisement

Log in

Cardiovascular and Renal Surrogate Markers in the Clinical Management of Hypertension

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Introduction

Surrogate markers represent a significant contribution to early diagnosis, longitudinal prognoses, and outcome prediction in cases of hypertension. They often enable detection of disease and disease potential when the disease is still subclinical and are useful noninvasive tools for designing and evaluating therapeutic programs. Surrogate markers are increasingly employed as predictive endpoints for treatment.

Methods

Key studies supporting the importance of surrogate markers as diagnostic and prognostic predictors of cardiovascular and renal clinical outcomes in hypertension, as well as what is known about the effects of renin-angiotensin-aldosterone system-blocking agents on these biomarkers were reviewed.

Results

Clinical data supporting the use of surrogate markers for heart failure, such as brain natriuretic peptide (BNP) and N-terminal prohormone BNP; markers for renal function, such as urinary albumin to creatinine ratio (UACR), urinary albumin excretion rates (UAER), and creatinine, reflecting glomerular filtration; and markers of cardiac remodeling, such as left ventricular hypertrophy and calculations of left ventricular mass index (LVMI), were reviewed for their utility in improving prognosis and treatment efficacy. Finally, hypertension treatment with angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and potentially direct renin inhibitors can significantly improve outcomes predicted by surrogate markers.

Conclusions

BNP, UACR, UAER, and LVMI, among others, have been increasingly established as valid surrogate markers with significant value for hypertension prognosis and therapy. The benefits of using surrogate markers to gauge the effectiveness of hypertension therapy in reducing renal and cardiac complications can be seen in improved morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89–95. doi:10.1067/mcp.2001.113989.

  2. Desai M, Stockbridge N, Temple R. Blood pressure as an example of a biomarker that functions as a surrogate. AAPS J. 2006;8:E146–52. doi:10.1208/aapsj080117.

    Article  PubMed  CAS  Google Scholar 

  3. Temple R. Are surrogate markers adequate to assess cardiovascular disease drugs? JAMA. 1999;282:790–5. doi:10.1001/jama.282.8.790.

    Article  PubMed  CAS  Google Scholar 

  4. Fleming TR, Prentice RL, Pepe MS, Glidden D. Surrogate and auxiliary endpoints in clinical trials, with potential applications in cancer and AIDS research. Stat Med. 1994;13:955–68. doi:10.1002/sim.4780130906.

    Article  PubMed  CAS  Google Scholar 

  5. Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med. 1989;8:431–40. doi:10.1002/sim.4780080407.

    Article  PubMed  CAS  Google Scholar 

  6. Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med. 1996;125:605–13.

    PubMed  CAS  Google Scholar 

  7. Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation. 2007;115:949–52. doi:10.1161/CIRCULATIONAHA.106.683110.

    Article  PubMed  Google Scholar 

  8. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–52. doi:10.1161/01.HYP.0000107251.49515.c2.

    Article  PubMed  CAS  Google Scholar 

  9. Calhoun DA, Jones D, Textor S, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26. doi:10.1161/CIRCULATIONAHA.108.189141.

    Article  PubMed  Google Scholar 

  10. Knaapen P, Germans T, Camici PG, et al. Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2008;294:H986–93. doi:10.1152/ajpheart.00233.2007.

    Article  PubMed  CAS  Google Scholar 

  11. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    PubMed  CAS  Google Scholar 

  12. Tune JD. Control of coronary blood flow during hypoxemia. Adv Exp Med Biol. 2007;618:25–39. doi:10.1007/978-0-387-75434-5_3.

    Article  PubMed  Google Scholar 

  13. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13. doi:10.1016/S0140-6736(02)11911-8.

    Article  PubMed  Google Scholar 

  14. Collins R, Peto R, Godwin J, MacMahon S. Blood pressure and coronary heart disease. Lancet. 1990;336:370–1. doi:10.1016/0140-6736(90)91908-S.

    Article  PubMed  CAS  Google Scholar 

  15. Collins R, Peto R, MacMahon S, et al. Blood pressure, stroke, and coronary heart disease. Part 2, Short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet. 1990;335:827–38. doi:10.1016/0140-6736(90)90944-Z.

    Article  PubMed  CAS  Google Scholar 

  16. MacMahon S, Peto R, Cutler J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335:765–74. doi:10.1016/0140-6736(90)90878-9.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang QL, Rothenbacher D. Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health. 2008;8:117. doi:10.1186/1471-2458-8-117.

    Article  PubMed  Google Scholar 

  18. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144:21–8.

    PubMed  Google Scholar 

  19. McCullough PA, Li S, Jurkovitz CT, et al. CKD and cardiovascular disease in screened high-risk volunteer and general populations: the Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am J Kidney Dis. 2008;51:S38–45. doi:10.1053/j.ajkd.2007.12.017.

    Article  PubMed  Google Scholar 

  20. Barri YM. Hypertension and kidney disease: a deadly connection. Curr Hypertens Rep. 2008;10:39–45. doi:10.1007/s11906-008-0009-y.

    Article  PubMed  Google Scholar 

  21. Bakris GL, Williams M, Dworkin L, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36:646–61.

    PubMed  CAS  Google Scholar 

  22. Zethelius B, Berglund L, Sundstrom J, et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med. 2008;358:2107–16. doi:10.1056/NEJMoa0707064.

    Article  PubMed  CAS  Google Scholar 

  23. Atlas SA. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm. 2007;13:9–20.

    PubMed  Google Scholar 

  24. Piepho RW, Beal J. An overview of antihypertensive therapy in the 20th century. J Clin Pharmacol. 2000;40:967–77. doi:10.1177/00912700022009693.

    Article  PubMed  CAS  Google Scholar 

  25. Bhatia V, Nayyar P, Dhindsa S. Brain natriuretic peptide in diagnosis and treatment of heart failure. J Postgrad Med. 2003;49:182–5.

    PubMed  CAS  Google Scholar 

  26. Weber M, Hamm C. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart. 2006;92:843–9. doi:10.1136/hrt.2005.071233.

    Article  PubMed  CAS  Google Scholar 

  27. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339:321–8. doi:10.1056/NEJM199807303390507.

    Article  PubMed  CAS  Google Scholar 

  28. McCullough PA, Nowak RM, McCord J, et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation. 2002;106:416–22. doi:10.1161/01.CIR.0000025242.79963.4C.

    Article  PubMed  Google Scholar 

  29. Januzzi JL Jr, Camargo CA, Anwaruddin S, et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95:948–54. doi:10.1016/j.amjcard.2004.12.032.

    Article  PubMed  CAS  Google Scholar 

  30. Latini R, Masson S, Wong M, et al. Incremental prognostic value of changes in B-type natriuretic peptide in heart failure. Am J Med. 2006;119:e23–30.

    Article  PubMed  CAS  Google Scholar 

  31. Balion CM, Santaguida P, McKelvie R, et al. Physiological, pathological, pharmacological, biochemical and hematological factors affecting BNP and NT-proBNP. Clin Biochem. 2008;41:231–9. doi:10.1016/j.clinbiochem.2007.10.005.

    Article  PubMed  CAS  Google Scholar 

  32. Hogenhuis J, Voors AA, Jaarsma T, et al. Anaemia and renal dysfunction are independently associated with BNP and NT-proBNP levels in patients with heart failure. Eur J Heart Fail. 2007;9:787–94. doi:10.1016/j.ejheart.2007.04.001.

    Article  PubMed  CAS  Google Scholar 

  33. Luchner A, Hengstenberg C, Lowel H, et al. Effect of compensated renal dysfunction on approved heart failure markers: direct comparison of brain natriuretic peptide (BNP) and N-terminal pro-BNP. Hypertension. 2005;46:118–23. doi:10.1161/01.HYP.0000170140.36633.8f.

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki M, Hamada M, Yamamoto K, Kazatani Y, Hiwada K. Brain natriuretic peptide as a risk marker for incident hypertensive cardiovascular events. Hypertens Res. 2002;25:669–76. doi:10.1291/hypres.25.669.

    Article  PubMed  CAS  Google Scholar 

  35. Olsen MH, Hansen TW, Christensen MK, et al. N-terminal pro brain natriuretic peptide is inversely related to metabolic cardiovascular risk factors and the metabolic syndrome. Hypertension. 2005;46:660–6. doi:10.1161/01.HYP.0000179575.13739.72.

    Article  PubMed  CAS  Google Scholar 

  36. Hildebrandt P, Boesen M, Olsen M, Wachtell K, Groenning B. N-terminal pro brain natriuretic peptide in arterial hypertension—a marker for left ventricular dimensions and prognosis. Eur J Heart Fail. 2004;6:313–7. doi:10.1016/j.ejheart.2004.01.001.

    Article  PubMed  CAS  Google Scholar 

  37. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003. doi:10.1016/S0140-6736(02)08089-3.

    Article  PubMed  CAS  Google Scholar 

  38. Olsen MH, Wachtell K, Nielsen OW, et al. N-terminal brain natriuretic peptide predicted cardiovascular events stronger than high-sensitivity C-reactive protein in hypertension: a LIFE substudy. J Hypertens. 2006;24:1531–9. doi:10.1097/01.hjh.0000239288.10013.04.

    PubMed  CAS  Google Scholar 

  39. Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667–75. doi:10.1056/NEJMoa010713.

    Article  PubMed  CAS  Google Scholar 

  40. Westermann D, Schmieder R, Schultheiss HP, Tschope C. Renin inhibitors, clinical experience. J Mol Med. 2008;86:691–5. doi:10.1007/s00109-008-0338-y.

    Article  PubMed  CAS  Google Scholar 

  41. McMurray JJV, Pitt B, Latini R, et al. Effects of the oral direct renin inhibitor aliskiren in patients with symptomatic heart failure. Circ Heart Fail. 2008;1:17–24.

    Article  CAS  PubMed  Google Scholar 

  42. Recio-Mayoral A, Kaski JC, McMurray JJ, et al. Clinical trials update from the European Society of Cardiology Congress in Vienna, 2007: PROSPECT, EVEREST, ARISE, ALOFT, FINESSE, Prague-8, CARESS in MI and ACUITY. Cardiovasc Drugs Ther. 2007;21:459–65. doi:10.1007/s10557-007-6069-4.

    Article  PubMed  CAS  Google Scholar 

  43. Devereux RB. Therapeutic options in minimizing left ventricular hypertrophy. Am Heart J. 2000;139:S9–14. doi:10.1067/mhj.2000.102902.

    Article  PubMed  CAS  Google Scholar 

  44. Schillaci G, Verdecchia P, Porcellati C, et al. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension. 2000;35:580–6.

    PubMed  CAS  Google Scholar 

  45. Hammond IW, Devereux RB, Alderman MH, et al. The prevalence and correlates of echocardiographic left ventricular hypertrophy among employed patients with uncomplicated hypertension. J Am Coll Cardiol. 1986;7:639–50.

    Article  PubMed  CAS  Google Scholar 

  46. Liebson PR, Grandits G, Prineas R, et al. Echocardiographic correlates of left ventricular structure among 844 mildly hypertensive men and women in the Treatment of Mild Hypertension Study (TOMHS). Circulation. 1993;87:476–86.

    PubMed  CAS  Google Scholar 

  47. Okin PM, Devereux RB, Jern S, et al. Regression of electrocardiographic left ventricular hypertrophy by losartan versus atenolol: The Losartan Intervention for Endpoint reduction in Hypertension (LIFE) Study. Circulation. 2003;108:684–90. doi:10.1161/01.CIR.0000083724.28630.C3.

    Article  PubMed  CAS  Google Scholar 

  48. Verdecchia P, Schillaci G, Borgioni C, et al. Prognostic value of a new electrocardiographic method for diagnosis of left ventricular hypertrophy in essential hypertension. J Am Coll Cardiol. 1998;31:383–90. doi:10.1016/S0735-1097(97)00493-2.

    Article  PubMed  CAS  Google Scholar 

  49. Casiglia E, Schiavon L, Tikhonoff V, et al. Electrocardiographic criteria of left ventricular hypertrophy in general population. Eur J Epidemiol. 2008;23:261–71. doi:10.1007/s10654-008-9234-6.

    Article  PubMed  Google Scholar 

  50. Gardin JM, McClelland R, Kitzman D, et al. M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the Cardiovascular Health Study). Am J Cardiol. 2001;87:1051–7. doi:10.1016/S0002-9149(01)01460-6.

    Article  PubMed  CAS  Google Scholar 

  51. Levy D. Clinical significance of left ventricular hypertrophy: insights from the Framingham Study. J Cardiovasc Pharmacol. 1991;17:S1–6. doi:10.1097/00005344-199117002-00002.

    Article  PubMed  Google Scholar 

  52. Levy D, Salomon M, D’Agostino RB, Belanger AJ, Kannel WB. Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation. 1994;90:1786–93.

    PubMed  CAS  Google Scholar 

  53. de Simone G, Gottdiener JS, Chinali M, Maurer MS. Left ventricular mass predicts heart failure not related to previous myocardial infarction: the Cardiovascular Health Study. Eur Heart J. 2008;29:741–7. doi:10.1093/eurheartj/ehm605.

    Article  PubMed  Google Scholar 

  54. Rosenberg M, Zugck C, Nelles M, et al. Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ Heart Fail. 2008;1:43–9.

    Article  CAS  PubMed  Google Scholar 

  55. Lee DS, Vasan RS. Novel markers for heart failure diagnosis and prognosis. Curr Opin Cardiol. 2005;20:201–10. doi:10.1097/01.hco.0000161832.04952.6a.

    Article  PubMed  Google Scholar 

  56. Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens. 2008;21:500–8. doi:10.1038/ajh.2008.16.

    Article  PubMed  Google Scholar 

  57. Gosse P, Sheridan DJ, Zannad F, et al. Regression of left ventricular hypertrophy in hypertensive patients treated with indapamide SR 1.5 mg versus enalapril 20 mg: the LIVE study. J Hypertens. 2000;18:1465–75. doi:10.1097/00004872-200018100-00015.

    Article  PubMed  CAS  Google Scholar 

  58. Devereux RB, Palmieri V, Sharpe N, et al. Effects of once-daily angiotensin-converting enzyme inhibition and calcium channel blockade-based antihypertensive treatment regimens on left ventricular hypertrophy and diastolic filling in hypertension: the prospective randomized enalapril study evaluating regression of ventricular enlargement (preserve) trial. Circulation. 2001;104:1248–54. doi:10.1161/hc3601.095927.

    Article  PubMed  CAS  Google Scholar 

  59. Pitt B, Reichek N, Willenbrock R, et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation. 2003;108:1831–8. doi:10.1161/01.CIR.0000091405.00772.6E.

    Article  PubMed  CAS  Google Scholar 

  60. Dahlof B, Gosse P, Gueret P, et al. Perindopril/indapamide combination more effective than enalapril in reducing blood pressure and left ventricular mass: the PICXEL study. J Hypertens. 2005;23:2063–70.

    PubMed  Google Scholar 

  61. Solomon S, Appelbaum E, Manning W, et al. Effect of the direct renin inhibitor aliskiren either alone or in combination with losartan, compared to losartan, on left ventricular mass in patients with hypertension and left ventricular hypertrophy (ALLAY) trial [late breaker presentation]. Presented at: American College of Cardiology Scientific Sessions; March 29–April 1, 2008; Chicago, IL.

  62. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39:S1–266.

    Google Scholar 

  63. So WY, Kong AP, Ma RC, et al. Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care. 2006;29:2046–52. doi:10.2337/dc06-0248.

    Article  PubMed  Google Scholar 

  64. Cirillo M, Lanti MP, Menotti A, et al. Definition of kidney dysfunction as a cardiovascular risk factor: use of urinary albumin excretion and estimated glomerular filtration rate. Arch Intern Med. 2008;168:617–24. doi:10.1001/archinte.168.6.617.

    Article  PubMed  CAS  Google Scholar 

  65. Marshall SM. Screening for microalbuminuria: which measurement? Diabet Med. 1991;8:706–11.

    Article  PubMed  CAS  Google Scholar 

  66. Jensen JS, Clausen P, Borch-Johnsen K, Jensen G, Feldt-Rasmussen B. Detecting microalbuminuria by urinary albumin/creatinine concentration ratio. Nephrol Dial Transplant. 1997;12:6–9. doi:10.1093/ndt/12.1.6.

    Article  PubMed  Google Scholar 

  67. Chiarelli F, Verrotti A, Mohn A, Morgese G. The importance of microalbuminuria as an indicator of incipient diabetic nephropathy: therapeutic implications. Ann Med. 1997;29:439–45. doi:10.3109/07853899708999374.

    Article  PubMed  CAS  Google Scholar 

  68. de Zeeuw D. Albuminuria, not only a cardiovascular/renal risk marker, but also a target for treatment? Kidney Int Suppl. 2004;66:S2–6. doi:10.1111/j.1523-1755.2004.09201.x.

    Article  Google Scholar 

  69. Ibsen H, Olsen MH, Wachtell K, et al. Reduction in albuminuria translates to reduction in cardiovascular events in hypertensive patients: losartan intervention for endpoint reduction in hypertension study. Hypertension. 2005;45:198–202. doi:10.1161/01.HYP.0000154082.72286.2a.

    Article  PubMed  CAS  Google Scholar 

  70. Servais A, Giral P, Bernard M, et al. Is serum cystatin-C a reliable marker for metabolic syndrome? Am J Med. 2008;121:426–32. doi:10.1016/j.amjmed.2008.01.040.

    Article  PubMed  CAS  Google Scholar 

  71. Malyszko J, Bachorzewska-Gajewska H, Malyszko JS, Pawlak K, Dobrzycki S. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in hypertensive and normotensive patients with coronary artery disease. Nephrol Carlton. 2008;13:153–6. doi:10.1111/j.1440-1797.2007.00899.x.

    Article  CAS  Google Scholar 

  72. Mogensen CE, Neldam S, Tikkanen I, et al. Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (CALM) study. BMJ. 2000;321:1440–4. doi:10.1136/bmj.321.7274.1440.

    Article  PubMed  CAS  Google Scholar 

  73. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9. doi:10.1056/NEJMoa011161.

    Article  PubMed  CAS  Google Scholar 

  74. Atkins RC, Briganti EM, Lewis JB, et al. Proteinuria reduction and progression to renal failure in patients with type 2 diabetes mellitus and overt nephropathy. Am J Kidney Dis. 2005;45:281–7. doi:10.1053/j.ajkd.2004.10.019.

    Article  PubMed  Google Scholar 

  75. Parving HH, Persson F, Lewis JB, Lewis EJ, Hollenberg NK. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med. 2008;358:2433–46. doi:10.1056/NEJMoa0708379.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments/Disclosures

Sponsorship role

This review article was sponsored by Novartis Pharmaceuticals Corporation, East Hanover, New Jersey. Novartis contributed to the identification of subject matter expert to author this manuscript and was provided the opportunity to discuss included content and review data for factual correctness and consistency.

Dr. Maisel received a modest honorarium from Novartis and editorial assistance from Complete Healthcare Communications, Inc. (CHC).

The opinions expressed in the review article are those of the author and do not necessarily represent the views of the journal, author’s institutions, CHC, or Novartis, unless otherwise specified.

Disclosure of off-label use

This review article may contain discussion of published and/or investigational uses of agents that are not approved by the FDA. Authors have been asked to disclose any off-label (unapproved) use of products mentioned in this article. If an off-label use is mentioned, each author is responsible for identifying the drug and its off-label indication. CHC, and Novartis do not recommend the use of any agent outside of the labeled indications. Please refer to the full prescribing information for each product for discussion of approved indications, contraindications, and warnings.

Disclaimer

Readers have an implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented in this article is not meant to serve as a guideline for patient management. Any procedures, medications, or other courses of diagnosis or treatment discussed or suggested in this article should not be used by clinicians without evaluation of their patient’s conditions and possible contraindications or dangers in use, review of any applicable manufacturer’s product information, and comparison with recommendations of other authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. Maisel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maisel, A.S. Cardiovascular and Renal Surrogate Markers in the Clinical Management of Hypertension. Cardiovasc Drugs Ther 23, 317–326 (2009). https://doi.org/10.1007/s10557-009-6177-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-009-6177-4

Key words

Navigation