Skip to main content

Advertisement

Log in

Selective PKC Beta Inhibition with Ruboxistaurin and Endothelial Function in Type-2 Diabetes Mellitus

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Type-2 diabetes mellitus increases risk of atherosclerotic cardiovascular disease. However, the mechanisms linking hyperglycemia and atherosclerosis remain poorly understood. One proposed mechanism involves endothelial dysfunction via activation of protein kinase C beta (PKC beta). Prior studies demonstrate beneficial effects of PKC beta inhibition on microvascular parameters, but, to date, no study has examined the effect on macrovascular atherosclerotic readouts.

Methods

The goal of this double-masked, placebo-controlled trial in type-2 diabetes was to assess the effect of the PKC beta-specific inhibitor, ruboxistaurin (32 mg/day for 6 weeks) on ultrasound assessed brachial artery flow mediated dilatation (FMD), a surrogate of macro vascular endothelial function, and urinary isoprostanes, indices of oxidant stress.

Results

Compared to placebo, ruboxistaurin tended to improve FMD (difference in 6-week change in FMD, mean ± SD millimeter) at one (0.13 ± 0.26 mm, p = 0.08) and 5 min (0.12 ± 0.21 mm, p = 0.02) after cuff deflation, but had no effect on nitroglycerin-mediated dilatation or urinary isoprostanes.

Conclusions

This proof of concept trial is the first to suggest that specific inhibition of PKC beta may improve macro vascular endothelial function in type-2 diabetes. Larger trials including clinical endpoints are warranted to determine the potential efficacy of PKC beta inhibition in reducing atherosclerotic cardiovascular complications in diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 2002;287:2570–81.

    Article  PubMed  CAS  Google Scholar 

  2. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  3. Way KJ, Chou E, King GL. Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci. 2000;21:181–7.

    Article  PubMed  CAS  Google Scholar 

  4. Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 2002;288:2579–88.

    Article  PubMed  CAS  Google Scholar 

  5. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes 1998;47:859–66.

    Article  PubMed  CAS  Google Scholar 

  6. Aiello LP, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 1997;46:1473–80.

    Article  PubMed  CAS  Google Scholar 

  7. Inoguchi T, et al. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci USA. 1992;89:11059–63.

    Article  PubMed  CAS  Google Scholar 

  8. Xia P, et al. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes 1994;43:1122–9.

    Article  PubMed  CAS  Google Scholar 

  9. Way KJ, Katai N, King GL. Protein kinase C and the development of diabetic vascular complications. Diabet Med. 2001;18:945–59.

    Article  PubMed  CAS  Google Scholar 

  10. Rask-Madsen C, King GL. Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler Thromb Vasc Biol. 2005;25:487–96.

    Article  PubMed  CAS  Google Scholar 

  11. Ishii H, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 1996;272:728–31.

    Article  PubMed  CAS  Google Scholar 

  12. The PKC-DRS Study Group. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy: initial results of the Protein Kinase C beta Inhibitor Diabetic Retinopathy Study (PKC-DRS) multicenter randomized clinical trial. Diabetes 2005;54:2188–97.

    Article  Google Scholar 

  13. Tesfaye S, et al. Factors that impact symptomatic diabetic peripheral neuropathy in placebo-administered patients from two 1-year clinical trials. Diabetes Care. 2007;30:2626–32.

    Article  PubMed  Google Scholar 

  14. Vinik AI, et al. Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase C beta-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebo-controlled, double-blind clinical trial. Clin Ther. 2005;27:1164–80.

    Article  PubMed  CAS  Google Scholar 

  15. Casellini CM, et al. A 6-month, randomized, double-masked, placebo-controlled study evaluating the effects of the protein kinase C-beta inhibitor ruboxistaurin on skin microvascular blood flow and other measures of diabetic peripheral neuropathy. Diabetes Care. 2007;30:896–902.

    Article  PubMed  CAS  Google Scholar 

  16. Idris I, Donnelly R. Protein kinase C beta inhibition: a novel therapeutic strategy for diabetic microangiopathy. Diab Vasc Dis Res. 2006;3:172–8.

    Article  PubMed  Google Scholar 

  17. Yan SF, et al. Protein kinase C beta/early growth response-1 pathway: a key player in ischemia, atherosclerosis, and restenosis. J Am Coll Cardiol. 2006;48:A47–55.

    Article  PubMed  CAS  Google Scholar 

  18. Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007;55:498–510.

    Article  PubMed  CAS  Google Scholar 

  19. Pratico D, et al. The isoprostanes in biology and medicine. Trends Endocrinol Metab. 2001;12:243–7.

    Article  PubMed  CAS  Google Scholar 

  20. Corretti MC, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39:257–65.

    Article  PubMed  Google Scholar 

  21. Suwaidi JA, et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2000;101:948–54.

    PubMed  CAS  Google Scholar 

  22. Halcox JP, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002;106:653–8.

    Article  PubMed  Google Scholar 

  23. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2004;27:S5–10.

    Article  Google Scholar 

  24. Davi G, et al. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 1999;99:224–9.

    PubMed  CAS  Google Scholar 

  25. Beckman JA, et al. Inhibition of protein kinase Cbeta prevents impaired endothelium-dependent vasodilation caused by hyperglycemia in humans. Circ Res. 2002;90:107–11.

    Article  PubMed  CAS  Google Scholar 

  26. Aiello LP, et al. Inhibition of PKC beta by oral administration of ruboxistaurin is well tolerated and ameliorates diabetes-induced retinal hemodynamic abnormalities in patients. Invest Ophthalmol Vis Sci. 2006;47:86–92.

    Article  PubMed  Google Scholar 

  27. Li H, et al. Quantitative high performance liquid chromatography/tandem mass spectrometric analysis of the four classes of F(2)-isoprostanes in human urine. Proc Natl Acad Sci USA. 1999;96:13381–6.

    Article  PubMed  CAS  Google Scholar 

  28. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813–20.

    Article  PubMed  CAS  Google Scholar 

  29. Taher MM, Garcia JG, Natarajan V. Hydroperoxide-induced diacylglycerol formation and protein kinase C activation in vascular endothelial cells. Arch Biochem Biophys. 1993;303:260–6.

    Article  PubMed  CAS  Google Scholar 

  30. Inoguchi T, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000;49:1939–45.

    Article  PubMed  CAS  Google Scholar 

  31. Quagliaro L, et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 2003;52:2795–804.

    Article  PubMed  CAS  Google Scholar 

  32. Kouroedov A, et al. Selective inhibition of protein kinase Cbeta2 prevents acute effects of high glucose on vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 2004;110:91–6.

    Article  PubMed  CAS  Google Scholar 

  33. Kitada M, et al. Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes 2003;52:2603–14.

    Article  PubMed  CAS  Google Scholar 

  34. Naruse K, et al. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes 2006;55:691–8.

    Article  PubMed  CAS  Google Scholar 

  35. Yamada Y, Yokota M. Effects of protein kinase C activation and inhibition on endothelin-1 release from human aortic and pulmonary artery endothelial cells: comparison with effects on bovine endothelin-1 and human prostaglandin I2 release. Am J Hypertens. 1997;10:32–42.

    Article  PubMed  CAS  Google Scholar 

  36. Meier M, King GL. Protein kinase C activation and its pharmacological inhibition in vascular disease. Vasc Med. 2000;5:173–85.

    PubMed  CAS  Google Scholar 

  37. Koya D, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 2000;14:439–47.

    PubMed  CAS  Google Scholar 

  38. The PKC-DMES Study Group. Effect of ruboxistaurin in patients with diabetic macular edema: thirty-month results of the randomized PKC-DMES clinical trial. Arch Ophthalmol. 2007;125:318–24.

    Article  Google Scholar 

  39. Hink U, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88:E14–22.

    PubMed  CAS  Google Scholar 

  40. de Jongh RT, et al. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes 2004;53:2873–82.

    Article  PubMed  Google Scholar 

  41. Steinberg HO, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100:1230–9.

    Article  PubMed  CAS  Google Scholar 

  42. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation 2007;115:1285–95.

    PubMed  Google Scholar 

  43. Hamburg NM, et al. Comparison of endothelial function in young men and women with a family history of premature coronary artery disease. Am J Cardiol. 2004;94:783–5.

    Article  PubMed  CAS  Google Scholar 

  44. Guzik TJ, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 2002;105:1656–62.

    Article  PubMed  CAS  Google Scholar 

  45. Naka Y, et al. RAGE axis: animal models and novel insights into the vascular complications of diabetes. Arterioscler Thromb Vasc Biol. 2004;24:1342–9.

    Article  PubMed  CAS  Google Scholar 

  46. Reilly MP, et al. Increased formation of distinct F2 isoprostanes in hypercholesterolemia. Circulation 1998;98:2822–8.

    PubMed  CAS  Google Scholar 

  47. Tuttle KR, et al. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care. 2005;28:2686–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muredach P. Reilly.

Additional information

This study was supported by an unrestricted grant from Eli Lilly & Co (MPR), NCRR K23 RR15532 (MPR), the PENN General Clinical Research Center (GCRC: NIH M01-RR00040) and a Clinical and Translational Science Award (RFA-RM-06-002) from the NCRR/NIH to the University of Pennsylvania.

Dr. Mehta is the recipient of the American College of Cardiology/Merck Young Investigator Grant in Metabolic Syndrome. MPR is supported by HL RO1-073278, HL P50-083799 (SCCOR) and the W.W. Smith Charitable Trust (#H0204).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, N.N., Sheetz, M., Price, K. et al. Selective PKC Beta Inhibition with Ruboxistaurin and Endothelial Function in Type-2 Diabetes Mellitus. Cardiovasc Drugs Ther 23, 17–24 (2009). https://doi.org/10.1007/s10557-008-6144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-008-6144-5

Key words

Navigation