Skip to main content
Log in

Feasibility of Using a Tube Reactor in High-Intensity Fischer-Tropsch Synthesis

  • Published:
Chemical and Petroleum Engineering Aims and scope

This article considers some of the problems associated with use of a tube reactor in high-intensity Fischer–Tropsch (FT) synthesis with heavy loads of processed syngas (3000–5000 h−1). The main factor preventing development of highly efficient FT synthesis is removal of the heat released. Intensification of the heat-exchange process may be possible by accelerating the convective heat-exchange component by increasing the linear speed of the gas flow from 0.1 to 10 m/sec. Required values of the heat-exchange coefficient, and the fictitious linear velocities of the gas flow at which maximum degree of CO processing is attained without disruption of the stable operating temperature regime of the reactor have been calculated. The expediency of reactive-gas circulation in FT synthesis is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. N. Khadzhiev and L. A. Vytnova, Neftekhimiya, 48, No. 2, 133–148 (2008).

    CAS  Google Scholar 

  2. M. E. Dry, Catal. Today, 71, 227–241 (2002).

    Article  CAS  Google Scholar 

  3. P. J. de Kok and R. R. M. Overtoom, Proc. 3rd Gas Processing Symp. (2012), pp. 157–164.

  4. L. V. Sineva, V. Z. Mordkovich, V. S. Ermolaev et al., Katal. Prom., No. 6, 13–22 (2012).

  5. B. N. Davis, Topics in Catal., 32, 143–167 (2005).

    Article  CAS  Google Scholar 

  6. M. E. Dry, Appl. Catal. A: General, 138, 319–344 (1996).

    Article  CAS  Google Scholar 

  7. S. LeViness, S. Deshmukh, L. Richard, and H. Robota, Top Catal., 57, 518–525 (2014).

    Article  CAS  Google Scholar 

  8. J. Koortzen, S. Bains, L. Kocher, et al., Ind. Eng. Chem. Res., 53, 1720–1726 (2014).

    Article  CAS  Google Scholar 

  9. M. E. Aerov and O. M. Todes, Hydraulic and Thermal Bases for Operation of Vessels With a Stationary and Fluidized Bed, Khimiya, Leningrad (1968).

    Google Scholar 

  10. I. O. Gershchenko and A. L. Lapidus, Tekhnol. Nefti Gaza, No. 5, 18–23 (2011).

  11. I. Gräf, A. K. Rühl, and B. Kraushaar-Czarnetzki, Chem. Eng. J., 244, 234–242. (2014).

    Article  Google Scholar 

  12. V. Kast, Convective Heat and Mass Transfer, Energiya, Moscow (1980).

    Google Scholar 

  13. K. F. Pavlov, P. G. Romankov (ed.), and A. A. Noskov, Examples and Problems Relative to Course in Processes and Equipment in Chemical Engineering: Textbook, Khimiya, Leningrad (1987).

  14. Tekhnolog Software, Fizkhim Program, Tekhnosoft Computer Center, Moscow.

  15. A. P. Savost’yanov, G. B. Narochnyi, R. E. Yakovenko, et al., Katal. Prom., No. 3, 43–48 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Yakovenko.

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, No. 3, pp. 11–13, March 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Narochnyi, G.B., Savost’yanov, A.P. et al. Feasibility of Using a Tube Reactor in High-Intensity Fischer-Tropsch Synthesis. Chem Petrol Eng 51, 159–163 (2015). https://doi.org/10.1007/s10556-015-0017-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10556-015-0017-0

Keywords

Navigation