Skip to main content
Log in

Enhancement of gasoline selectivity in combined reactor system consisting of steam reforming of methane and Fischer-Tropsch synthesis

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A two-stage, one-dimensional configuration model including the steam reforming of methane (SRM) and Fischer-Tropsch (FT) synthesis has been developed for the production of hydrocarbons. This configuration is used to investigate hydrocarbon product distribution, such as gasoline. The first SRM reactor is fed by methane and steam, and the products are converted to hydrocarbons by the second FT reactor. The model was solved numerically by applying the finite difference approximation, and the set of first-order ODEs was solved in the axial direction. The results show that complete conversion of hydrogen in the second reactor can be achieved although a small amount of carbon monoxide remains. Furthermore, at higher H2O/CH4 ratio (and low CO in feed), lower C2-C5 yield and selectivity is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Bartholomew and R. J. Farrauto, In Fundamentals of industrial catalytic processes, Wiley, Hoboken, New Jersey, USA, Chapter 6 (2006).

    Google Scholar 

  2. M. A. Soliman, S. S. E. H. El-Nashaie, A. S. Al-Ubaid and A. Adris, Chem. Eng. Sci., 43, 1801 (1988).

    Article  CAS  Google Scholar 

  3. A.M. Adris, C. J. Lim and J. R. Grace, Chem. Eng. Sci., 52, 1609 (1997).

    Article  CAS  Google Scholar 

  4. M. De Falco, L. Di Paola, L. Marrelli and P. Nardella, Chem. Eng. J., 128, 115 (2007).

    Article  Google Scholar 

  5. P. Sadooghi and R. Rauch, J. Nat. Gas. Sci. Eng., 11, 46 (2013).

    Article  CAS  Google Scholar 

  6. X. Wu, Ch. Wu and S. Wu, Chem. Eng. Res. Des., 96, 150 (2015).

    Article  CAS  Google Scholar 

  7. W.D. Deckwer, Y. Serpemen, M. Ralek and B. Schmidt, Ind. Eng. Chem. Proc. Des. Dev., 21, 231 (1982).

    Article  CAS  Google Scholar 

  8. J.R. Turner and P. L. Mills, Chem. Eng. Sci., 45, 2317 (1990).

    Article  CAS  Google Scholar 

  9. H. S. Song, D. Ramkrishna, S. Trinh and H. Wright, Korean J. Chem. Eng., 21, 308 (2004).

    Article  CAS  Google Scholar 

  10. J. Wu, H. Zhang, W. E. I.Y.O. N. G. Ying and D. Fang, Chem. Eng. Technol., 33, 1083 (2010).

    Article  CAS  Google Scholar 

  11. N. Park, J.R. Kim, Y. Yoo, J. Lee and M. J. Park, Fuel, 122, 229 (2014).

    Article  CAS  Google Scholar 

  12. Y. H. Kim, K.W. Jun, H. Joo, C. Han and I. K. Song, Chem. Eng. J., 155, 427 (2009).

    Article  CAS  Google Scholar 

  13. A.K. Avci, D. L. Trimm and Z. Ilsen Önsan, Chem. Eng. Sci., 56, 641 (2001).

    Article  CAS  Google Scholar 

  14. M. Johns, P. Collier, M.S. Spencer, T. Alderson and G. J. Hutchings, Catal. Let., 90, 187 (2003).

    Article  CAS  Google Scholar 

  15. M.A. Marvast, M. Sohrabi, S. Zarrinpashne and G. Baghmisheh, Chem. Eng Technol., 28, 78 (2005).

    Article  CAS  Google Scholar 

  16. A.N. Pour, S. M. K. Shahri, Y. Zamani, M. Irani and S. Tehrani, J. Nat. Gas. Chem., 17, 242 (2008).

    Article  CAS  Google Scholar 

  17. J. Xu and G. F. Froment, AIChE J., 35, 88 (1989).

    Article  CAS  Google Scholar 

  18. M.M. Montazer-Rahmati and M. Bargah-Soleimani, Can._J. Chem. Eng., 79, 800 (2001).

    Article  CAS  Google Scholar 

  19. H. Brauer, Chem. Ing. Technol., 29, 785 (1957).

    Article  CAS  Google Scholar 

  20. W. Reichelt and E. Blaß, Chem. Ing. Technol., 43, 949 (1971).

    Article  Google Scholar 

  21. S. Ergun, Chem. Eng. Prog., 48, 89 (1952).

    CAS  Google Scholar 

  22. A. P. De Wasch and G.F. Froment, Chem. Eng. Sci., 27, 567 (1972).

    Article  Google Scholar 

  23. G. F. Froment and K.B. Bischoff, Chemical Reactor Analysis and Design, John Wiley, New York (1979).

    Google Scholar 

  24. D. Kunii and J. M. Smith, AIChE J., 6, 71 (1960).

    Article  CAS  Google Scholar 

  25. E. L. Cussler, Diffusion, Mass Transfer in Fluid Systems, Cambridge: Cam. Univ. Press, 525: ll (1984).

    Google Scholar 

  26. C.R. Wilke, Chem. Eng. Prog., 45, 218 (1949).

    CAS  Google Scholar 

  27. M. Panahi, MSc thesis, Sharif University of Technology, Tehran, Iran (2005).

    Google Scholar 

  28. S. Krishnamoorthy, A. Li and E. Iglesia, Catal. Let., 80, 77 (2002).

    Article  CAS  Google Scholar 

  29. M.R. Rahimpour and H. Elekaei, Fuel. Proc. Technol., 90, 747 (2009).

    Article  CAS  Google Scholar 

  30. R.C. Everson, E.T. Woodburn and A.R.M. Kirk, J. Catal., 53, 186 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Shahraki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghareghashi, A., Shahraki, F., Razzaghi, K. et al. Enhancement of gasoline selectivity in combined reactor system consisting of steam reforming of methane and Fischer-Tropsch synthesis. Korean J. Chem. Eng. 34, 87–99 (2017). https://doi.org/10.1007/s11814-016-0242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0242-z

Keywords

Navigation