Skip to main content

Advertisement

Log in

The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment

  • Non-tThematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Wnt5a is the prototypical activator of the non-canonical Wnt pathways, and its overexpression has been implicated in the progression of several tumor types by promoting cell motility, invasion, EMT, and metastasis. Recent evidences have revealed a novel role of Wnt5a in the phosphorylation of the NF-κB subunit p65 and the activation of the NF-κB pathway in cancer cells. In this article, we review the molecular mechanisms and mediators defining a Wnt5a/NF-κB signaling pathway and propose that the aberrant expression of Wnt5a in some tumors drives a Wnt5a/NF-κB/IL-6/STAT3 positive feedback loop that amplifies the effects of Wnt5a. The evidences discussed here suggest that Wnt5a has a double effect on the tumor microenvironment. First, it activates an autocrine ROR1/Akt/p65 pathway that promotes inflammation and chemotaxis of immune cells. Then, Wnt5a activates a TLR/MyD88/p50 pathway exclusively in myelomonocytic cells promoting the synthesis of the anti-inflammatory cytokine IL-10 and a tolerogenic phenotype. As a result of these mechanisms, Wnt5a plays a negative role on immune cell function that contributes to an immunosuppressive tumor microenvironment and would contribute to resistance to immunotherapy. Finally, we summarized the development of different strategies targeting either Wnt5a or the Wnt5a receptor ROR1 that can be helpful for cancer therapy by contributing to generate a more immunostimulatory tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

Antibody-drug conjugates

Akt:

RAC-alpha serine/threonine-protein kinase

BiTE:

Bi-specific T cell engager

BRAF:

vRaf murine sarcoma viral oncogen

CaMKII :

Calmoduline kinase II

CAR-T:

Chimeric antigen receptor T cell

CCL:

Chemokine (C-C motif) ligand

CE:

Convergent extension

cGMP:

Cyclic guanosine monophosphate

CK2:

Casein kinase 2

CLL:

Chronic lymphocytic leukemia

CREB:

cAMP response element binding

CTL:

Cytotoxic T lymphocyte

CTLA-4:

Cytotoxic T-lymphocyte antigen 4

CXCL:

Chemokine (C-X-C motif) ligand

DC:

Dendritic cells

Dkk:

Dickkopf

Dvl:

Dishevelled

EMT:

Epithelial-mesenchymal transition

ERK:

Extracellular regulated kinase

FOXC1:

Forkhead box C1

FOXM1:

Forkhead box transcription factor M1

IDO:

Indoleamine 2,3-dioxygenase-1

IKK:

IκB kinase

IL:

Interleukin

ICT:

Immune checkpoint therapy

IκB:

Inhibitor of NF-κB

JAK:

Janus kinase

JNK :

c-Jun N-terminal kinase

LPD:

Lipid-protamine-DNA

LPR:

Lipoprotein receptor–related protein

LPS:

Lipopolysaccharide

LTA:

Lipoteichoic acid

mAbs:

Monoclonal antibodies

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemoattractant protein 1

MMP:

Matrix metaloprotease

MSDC:

Myeloid-derived suppressor cells

MTOC:

Microtubule-organizing center

mTOR:

Mouse target of rapamycin

NETs:

Neutrophil extracellular traps

NF-κB:

Nuclear factor enhancer of immunoglobulin kappa light chain of activated B cells

NIK :

NF-κB inducing kinase

PCP:

Polar cell planarity

PD-1:

Programmed cell death receptor 1

PDE:

Phosphodiesterase

PI3K :

Phosphoinositide-3 kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

PLC :

Phospholipase C

PORC:

Porcupine

RAC1:

Ras-related C3 botulinum toxin substrate 1

RANKL :

Receptor activator for NF-κB ligand

RAP1:

Ras-related protein 1

RHD:

Rel homology domain

Rho:

Ras homolog family member

RIP1:

Receptor interacting protein 1

ROR1/2:

RTK-like orphan receptor 1/2

ROS:

Reactive oxygen species

Ryk:

Receptor tyrosine kinase

shRNA :

Short hairpin RNA

Src:

Proto-oncogene tyrosine-protein kinase Src

STAT3:

Signal transducer and activator of transcription 3

TAK1 :

Transforming growth factor beta-activated kinase 1

TAMs:

Tumor-associated macrophages

TCF/LEF:

T cell factor/lymphoid enhancing factor

TGFβ:

Transforming growth factor beta

Th:

T helper cell

TLR :

Toll-like receptor

TME:

Tumor microenvironment

TNFα:

Tumor necrosis factor alpha

TRAF2:

TNF receptor associated factor 2

Treg:

Regulatory T cells

WIF1:

Wnt inhibitory factor 1

References

  1. van Amerongen, R., & Nusse, R. (2009). Towards an integrated view of Wnt signaling in development. Development, 136(19), 3205–3214. https://doi.org/10.1242/dev.033910.

    Article  CAS  PubMed  Google Scholar 

  2. van Amerongen, R. (2012). Alternative Wnt pathways and receptors. Cold Spring Harbor Perspectives in Biology, 4(10), a007914–a007914. https://doi.org/10.1101/cshperspect.a007914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kikuchi, A., Yamamoto, H., Sato, A., & Matsumoto, S. (2012). Wnt5a: its signalling, functions and implication in diseases. Acta physiologica (Oxford, England), 204(1), 17–33.

    CAS  Google Scholar 

  4. Endo, M., Nishita, M., Fujii, M., & Minami, Y. (2015). Insight into the role of Wnt5a-induced signaling in normal and cancer cells. In International Review of Cell and Molecular Biology (Vol. 314, pp. 117–148). Elsevier. https://doi.org/10.1016/bs.ircmb.2014.10.003

  5. Angers, S., & Moon, R. T. (2009). Proximal events in Wnt signal transduction. Nature reviews. Molecular cell biology, 10(7), 468–477.

  6. Zhou, Y., Kipps, T. J., & Zhang, S. (2017). Wnt5a signaling in normal and cancer stem cells. Stem Cells International, 2017, 1–6. https://doi.org/10.1155/2017/5295286.

    Article  CAS  Google Scholar 

  7. Mikels, A. J., & Nusse, R. (2006). Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS biology, 4(4), e115.

    PubMed  PubMed Central  Google Scholar 

  8. Kumawat, K., & Gosens, R. (2016). WNT-5A: signaling and functions in health and disease. Cellular and molecular life sciences : CMLS, 73(3), 567–587.

    CAS  PubMed  Google Scholar 

  9. Moon, R. (1997). WNTs modulate cell fate and behavior during vertebrate development. Trends in Genetics, 13(4), 157–162. https://doi.org/10.1016/S0168-9525(97)01093-7.

    Article  CAS  PubMed  Google Scholar 

  10. Yap, L. F., Ahmad, M., Zabidi, M. M. A., Chu, T. L., Chai, S. J., Lee, H. M., et al. (2014). Oncogenic effects of WNT5A in Epstein-Barr virus-associated nasopharyngeal carcinoma. International journal of oncology, 44(5), 1774–1780.

    CAS  PubMed  Google Scholar 

  11. Chaussabel, D., Semnani, R. T., McDowell, M. A., Sacks, D., Sher, A., & Nutman, T. B. (2003). Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood, 102(2), 672–681.

    CAS  PubMed  Google Scholar 

  12. Nau, G. J., Richmond, J. F. L., Schlesinger, A., Jennings, E. G., Lander, E. S., & Young, R. A. (2002). Human macrophage activation programs induced by bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1503–1508.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nanbara, H., Wara-aswapati, N., Nagasawa, T., Yoshida, Y., Yashiro, R., Bando, Y., et al. (2012). Modulation of Wnt5a expression by periodontopathic bacteria. PloS one, 7(4), e34434.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rauner, M., Stein, N., Winzer, M., Goettsch, C., Zwerina, J., Schett, G., et al. (2012). WNT5A is induced by inflammatory mediators in bone marrow stromal cells and regulates cytokine and chemokine production. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 27(3), 575–585.

    CAS  Google Scholar 

  15. Villaseñor, T., Madrid-Paulino, E., Maldonado-Bravo, R., Urbán-Aragón, A., Pérez-Martínez, L., & Pedraza-Alva, G. (2017). Activation of the Wnt pathway by mycobacterium tuberculosis: a Wnt-Wnt situation. Frontiers in immunology, 8, 50.

    PubMed  PubMed Central  Google Scholar 

  16. Catalán, V., Gómez-Ambrosi, J., Rodríguez, A., Pérez-Hernández, A. I., Gurbindo, J., Ramírez, B., et al. (2014). Activation of noncanonical Wnt signaling through WNT5A in visceral adipose tissue of obese subjects is related to inflammation. The Journal of Clinical Endocrinology & Metabolism, 99(8), E1407–E1417. https://doi.org/10.1210/jc.2014-1191.

    Article  CAS  Google Scholar 

  17. Zhao, Y., Wang, C.-L., Li, R.-M., Hui, T.-Q., Su, Y.-Y., Yuan, Q., et al. (2014). Wnt5a promotes inflammatory responses via nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in human dental pulp cells. The Journal of biological chemistry, 289(30), 21028–21039.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pereira, C., Schaer, D. J., Bachli, E. B., Kurrer, M. O., & Schoedon, G. (2008). Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arteriosclerosis, thrombosis, and vascular biology, 28(3), 504–510.

    CAS  PubMed  Google Scholar 

  19. Ge, X.-P., Gan, Y.-H., Zhang, C.-G., Zhou, C.-Y., Ma, K.-T., Meng, J.-H., & Ma, X.-C. (2011). Requirement of the NF-κB pathway for induction of Wnt-5A by interleukin-1β in condylar chondrocytes of the temporomandibular joint: functional crosstalk between the Wnt-5A and NF-κB signaling pathways. Osteoarthritis and cartilage, 19(1), 111–117.

    PubMed  Google Scholar 

  20. Lee, J. G., & Heur, M. (2014). Interleukin-1β-induced Wnt5a enhances human corneal endothelial cell migration through regulation of Cdc42 and RhoA. Molecular and cellular biology, 34(18), 3535–3545.

    PubMed  PubMed Central  Google Scholar 

  21. Park, S.-Y., Kang, M.-J., & Han, J.-S. (2018). Interleukin-1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells. Molecular brain, 11(1), 39.

    PubMed  PubMed Central  Google Scholar 

  22. Linnskog, R., Jönsson, G., Axelsson, L., Prasad, C. P., & Andersson, T. (2014). Interleukin-6 drives melanoma cell motility through p38α-MAPK-dependent up-regulation of WNT5A expression. Molecular Oncology, 8(8), 1365–1378. https://doi.org/10.1016/j.molonc.2014.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Linnskog, R., Mohapatra, P., Moradi, F., Prasad, C. P., & Andersson, T. (2016). Demonstration of a WNT5A-IL-6 positive feedback loop in melanoma cells: dual interference of this loop more effectively impairs melanoma cell invasion. Oncotarget, 7(25). https://doi.org/10.18632/oncotarget.9332.

  24. Blumenthal, A., Ehlers, S., Lauber, J., Buer, J., Lange, C., Goldmann, T., et al. (2006). The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood, 108(3), 965–973.

    CAS  PubMed  Google Scholar 

  25. He, W., Wang, Z., Zhou, Z., Zhang, Y., Zhu, Q., Wei, K., et al. (2014). Lipopolysaccharide enhances Wnt5a expression through toll-like receptor 4, myeloid differentiating factor 88, phosphatidylinositol 3-OH kinase/AKT and nuclear factor kappa B pathways in human dental pulp stem cells. Journal of endodontics, 40(1), 69–75.

    PubMed  Google Scholar 

  26. Arabzadeh, S., Hossein, G., & Zarnani, A. H. (2016). Wnt5A exerts immunomodulatory activity in the human ovarian cancer cell line SKOV-3. Cell biology international, 40(2), 177–187.

    CAS  PubMed  Google Scholar 

  27. Iozzo, R. V., Eichstetter, I., & Danielson, K. G. (1995). Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer research, 55(16), 3495–3499.

    CAS  PubMed  Google Scholar 

  28. Hu, B., Wang, Q., Wang, Y. A., Hua, S., Sauvé, C.-E. G., Ong, D., … DePinho, R. A. (2016). Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell, 167(5), 1281-1295.e18. 10.1016/j.cell.2016.10.039

  29. Anastas, J. N., Kulikauskas, R. M., Tamir, T., Rizos, H., Long, G. V., von Euw, E. M., et al. (2014). WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. The Journal of clinical investigation, 124(7), 2877–2890.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Asem, M. S., Buechler, S., Wates, R. B., Miller, D. L., & Stack, M. S. (2016). Wnt5a signaling in cancer. Cancers, 8(9). Retrieved from http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=27571105&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum

  31. McDonald, S. L., & Silver, A. (2009). The opposing roles of Wnt-5a in cancer. British Journal of Cancer, 101(2), 209–214. https://doi.org/10.1038/sj.bjc.6605174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deng, X., Tu, Z., Xiong, M., Tembo, K., Zhou, L., Liu, P., et al. (2017). Wnt5a and CCL25 promote adult T-cell acute lymphoblastic leukemia cell migration, invasion and metastasis. Oncotarget, 8(24), 39033–39047. https://doi.org/10.18632/oncotarget.16559.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Forno, P. D. D., Pringle, J. H., Hutchinson, P., Osborn, J., Huang, Q., Potter, L., et al. (2008). WNT5A expression increases during melanoma progression and correlates with outcome. Clinical Cancer Research, 14(18), 5825–5832. https://doi.org/10.1158/1078-0432.CCR-07-5104.

    Article  CAS  PubMed  Google Scholar 

  34. Kurayoshi, M., Oue, N., Yamamoto, H., Kishida, M., Inoue, A., Asahara, T., et al. (2006). Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Research, 66(21), 10439–10448. https://doi.org/10.1158/0008-5472.CAN-06-2359.

    Article  CAS  PubMed  Google Scholar 

  35. Huang, C., Liu, D., Nakano, J., Ishikawa, S., Kontani, K., Yokomise, H., & Ueno, M. (2005). Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor—an expression in non–small-cell lung cancer. Journal of Clinical Oncology, 23(34), 8765–8773. https://doi.org/10.1200/JCO.2005.02.2871.

    Article  PubMed  Google Scholar 

  36. Ripka, S., König, A., Buchholz, M., Wagner, M., Sipos, B., Klöppel, G., et al. (2007). WNT5A—target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis, 28(6), 1178–1187. https://doi.org/10.1093/carcin/bgl255.

    Article  CAS  PubMed  Google Scholar 

  37. Zeng, R., Huang, J., Zhong, M., Li, L., Yang, G., Liu, L., et al. (2016). Multiple roles of WNT5A in breast cancer. Medical Science Monitor, 22, 5058–5067. https://doi.org/10.12659/MSM.902022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamamoto, H., Oue, N., Sato, A., Hasegawa, Y., Yamamoto, H., Matsubara, A., et al. (2010). Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene, 29(14), 2036–2046. https://doi.org/10.1038/onc.2009.496.

    Article  CAS  PubMed  Google Scholar 

  39. Blanc, E., Roux, G. L., Bénard, J., & Raguénez, G. (2005). Low expression of Wnt-5a gene is associated with high-risk neuroblastoma. Oncogene, 24(7), 1277–1283. https://doi.org/10.1038/sj.onc.1208255.

    Article  CAS  PubMed  Google Scholar 

  40. Liang, H., Chen, Q., Coles, A. H., Anderson, S. J., Pihan, G., Bradley, A., et al. (2003). Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell, 4(5), 349–360. https://doi.org/10.1016/S1535-6108(03)00268-X.

    Article  CAS  PubMed  Google Scholar 

  41. Jönsson, M., Dejmek, J., Bendahl, P.-O., & Andersson, T. (2002). Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Research, 62(2), 409–416.

    PubMed  Google Scholar 

  42. Kobayashi, Y., Kadoya, T., Amioka, A., Hanaki, H., Sasada, S., Masumoto, N., et al. (2018). Wnt5a-induced cell migration is associated with the aggressiveness of estrogen receptor-positive breast cancer. Oncotarget, 9(30), 20979–20992. https://doi.org/10.18632/oncotarget.24761.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cheng, R., Sun, B., Liu, Z., Zhao, X., Qi, L., Li, Y., & Gu, Q. (2014). Wnt5a suppresses colon cancer by inhibiting cell proliferation and epithelial–mesenchymal transition. Journal of Cellular Physiology, 229(12), 1908–1917. https://doi.org/10.1002/jcp.24566.

    Article  CAS  PubMed  Google Scholar 

  44. Kremenevskaja, N., von Wasielewski, R., Rao, A. S., Schöfl, C., Andersson, T., & Brabant, G. (2005). Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene, 24(13), 2144–2154. https://doi.org/10.1038/sj.onc.1208370.

    Article  CAS  PubMed  Google Scholar 

  45. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  46. Shao, Y., Zheng, Q., Wang, W., Xin, N., Song, X., & Zhao, C. (2016). Biological functions of macrophage-derived Wnt5a, and its roles in human diseases. Oncotarget, 7(41), 67674–67684. https://doi.org/10.18632/oncotarget.11874.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pashirzad, M., Shafiee, M., Rahmani, F., Behnam-Rassouli, R., Hoseinkhani, F., Ryzhikov, M., et al. (2017). Role of Wnt5a in the pathogenesis of inflammatory diseases. Journal of Cellular Physiology, 232(7), 1611–1616. https://doi.org/10.1002/jcp.25687.

    Article  CAS  PubMed  Google Scholar 

  48. Gatica-Andrades, M., Vagenas, D., Kling, J., Nguyen, T. T. K., Benham, H., Thomas, R., et al. (2017). WNT ligands contribute to the immune response during septic shock and amplify endotoxemia-driven inflammation in mice. Blood advances, 1(16), 1274–1286.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Karin, M., Cao, Y., Greten, F. R., & Li, Z.-W. (2002). NF-κB in cancer: from innocent bystander to major culprit. Nature Reviews Cancer, 2(4), 301–310. https://doi.org/10.1038/nrc780.

    Article  CAS  PubMed  Google Scholar 

  50. Hoesel, B., & Schmid, J. A. (2013). The complexity of NF-κB signaling in inflammation and cancer. Molecular cancer, 12, 86.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hayden, M. S., & Ghosh, S. (2012). NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes & development, 26(3), 203–234.

    CAS  Google Scholar 

  52. Hayden, M. S., & Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell, 132(3), 344–362.

    CAS  PubMed  Google Scholar 

  53. Sun, S. (2010). Non canonical NF-κB signaling pathway Cell Research, 21 SRC-BaiduScholar, 71–85.

  54. Kato, T., Delhase, M., Hoffmann, A., & Karin, M. (2003). CK2 is a C-terminal IkappaB kinase responsible for NF-kappaB activation during the UV response. Molecular cell, 12(4), 829–839.

    CAS  PubMed  Google Scholar 

  55. van Dijk, E. M., Menzen, M. H., Spanjer, A. I. R., Middag, L. D. C., Brandsma, C.-A. A., & Gosens, R. (2016). Noncanonical WNT-5B signaling induces inflammatory responses in human lung fibroblasts. American journal of physiology. Lung cellular and molecular physiology, 310(11), L1166-L1176.

  56. Valencia, J., Hernández-López, C., Martínez, V. G., Hidalgo, L., Zapata, A. G., Vicente, Á., … Sacedón, R. (2011). Wnt5a skews dendritic cell differentiation to an unconventional phenotype with tolerogenic features. Journal of Immunology (Baltimore, Md.: 1950), 187(8), 4129–4139. https://doi.org/10.4049/jimmunol.1101243

  57. Kim, J., Chang, W., Jung, Y., Song, K., & Lee, I. (2012). Wnt5a activates THP-1 monocytic cells via a β-catenin-independent pathway involving JNK and NF-κB activation. Cytokine, 60(1), 242–248.

    CAS  PubMed  Google Scholar 

  58. Naskar, D., Maiti, G., Chakraborty, A., Roy, A., Chattopadhyay, D., & Sen, M. (2014). Wnt5a-Rac1-NF-κB homeostatic circuitry sustains innate immune functions in macrophages. Journal of immunology (Baltimore, Md. : 1950), 192(9), 4386–97.

  59. Kim, J., Kim, J., Kim, D. W., Ha, Y., Ihm, M. H., Kim, H., … Lee, I. (2010). Wnt5a induces endothelial inflammation via beta-catenin-independent signaling. Journal of immunology (Baltimore, Md. : 1950), 185(2), 1274–82.

  60. Zhao, Y., Zhang, C., Huang, Y., Yu, Y., Li, R., Li, M., et al. (2015). Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-κB signaling in the granulosa cells of PCOS patients. The Journal of clinical endocrinology and metabolism, 100(1), 201–211.

    CAS  PubMed  Google Scholar 

  61. Yang, L., Chu, Y., Wang, Y., Zhao, X., Xu, W., Zhang, P., et al. (2014). siRNA-mediated silencing of Wnt5a regulates inflammatory responses in atherosclerosis through the MAPK/NF-κB pathways. International journal of molecular medicine, 34(4), 1147–1152.

    CAS  PubMed  Google Scholar 

  62. Bradley, E. W., & Drissi, M. H. (2010). WNT5A regulates chondrocyte differentiation through differential use of the CaN/NFAT and IKK/NF-kappaB pathways. Molecular endocrinology (Baltimore, Md.), 24(8), 1581–93.

  63. Li, Z., Zhang, K., Li, X., Pan, H., Li, S., Chen, F., et al. (2018). Wnt5a suppresses inflammation-driven intervertebral disc degeneration via a TNF-α/NF-κB-Wnt5a negative-feedback loop. Osteoarthritis and cartilage, 26(7), 966–977.

    CAS  PubMed  Google Scholar 

  64. Kim, J.-H., Park, S., Chung, H., & Oh, S. (2015). Wnt5a attenuates the pathogenic effects of the Wnt/β-catenin pathway in human retinal pigment epithelial cells via down-regulating β-catenin and Snail. BMB reports, 48(9), 525–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, G. T., Kwon, S. J., Kim, J., Kwon, Y. S., Lee, N., Hong, J. H., et al. (2018). WNT5A induces castration-resistant prostate cancer via CCL2 and tumour-infiltrating macrophages. British journal of cancer, 118(5), 670–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Han, B., Zhou, B., Qu, Y., Gao, B., Xu, Y., Chung, S., et al. (2018). FOXC1-induced non-canonical WNT5A-MMP7 signaling regulates invasiveness in triple-negative breast cancer. Oncogene, 37(10), 1399–1408.

    CAS  PubMed  Google Scholar 

  67. Barbero, G., Castro, M. V., Villanueva, M. B., Quezada, M. J., Fernández, N. B., DeMorrow, S., & Lopez-Bergami, P. (2019). An autocrine Wnt5a loop promotes NF-κB pathway activation and cytokine/chemokine secretion in melanoma. Cells, 8(9), 1060. https://doi.org/10.3390/cells8091060.

    Article  CAS  PubMed Central  Google Scholar 

  68. Chen, Y., Chen, L., Yu, J., Ghia, E. M., Choi, M. Y., Zhang, L., et al. (2019). Cirmtuzumab blocks Wnt5a/ROR1 stimulation of NF-κB to repress autocrine STAT3 activation in chronic lymphocytic leukemia. Blood, 134(13), 1084–1094. https://doi.org/10.1182/blood.2019001366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fukuda, T., Chen, L., Endo, T., Tang, L., Lu, D., Castro, J. E., et al. (2008). Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 3047–3052.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Diaz-Horta, O., Abad, C., Sennaroglu, L., Foster, J., DeSmidt, A., Bademci, G., et al. (2016). ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice. Proceedings of the National Academy of Sciences of the United States of America, 113(21), 5993–5998.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao, H., Zhao, Y., Jiang, G., Zhang, X., Zhang, Y., & Dong, Q. (2015). Dishevelled-3 activates p65 to upregulate p120-catenin transcription via a p38-dependent pathway in non-small cell lung cancer. Mol Carcinog, 54(1), 112–121.

    Google Scholar 

  72. Fernández, N. B., Lorenzo, D., Picco, M. E., Barbero, G., Dergan-Dylon, L. S., Marks, M. P., et al. (2016). ROR1 contributes to melanoma cell growth and migration by regulating N-cadherin expression via the PI3K/Akt pathway: ROR1 increases melanoma cell growth and migration. Molecular Carcinogenesis, 55(11), 1772–1785. https://doi.org/10.1002/mc.22426.

    Article  CAS  PubMed  Google Scholar 

  73. Dhawan, P., Singh, A. B., Ellis, D. L., & Richmond, A. (2002). Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Research, 62(24), 7335–7342.

    CAS  PubMed  Google Scholar 

  74. Guo, R.-X., Qiao, Y.-H., Zhou, Y., Li, L.-X., Shi, H.-R., & Chen, K.-S. (2008). Increased staining for phosphorylated AKT and nuclear factor-κB p65 and their relationship with prognosis in epithelial ovarian cancer. Pathology International, 58(12), 749–756. https://doi.org/10.1111/j.1440-1827.2008.02306.x.

    Article  CAS  PubMed  Google Scholar 

  75. Pan, X., Jiang, B., Liu, J., Ding, J., Li, Y., Sun, R., et al. (2017). STC1 promotes cell apoptosis via NF-κB phospho-P65 Ser536 in cervical cancer cells. Oncotarget, 8(28). https://doi.org/10.18632/oncotarget.17641.

  76. Ning, L., Ma, H., Jiang, Z., Chen, L., Li, L., Chen, Q., & Qi, H. (2016). Curcumol suppresses breast cancer cell metastasis by inhibiting MMP-9 via JNK1/2 and Akt-dependent NF-κB signaling pathways. Integrative Cancer Therapies, 15(2), 216–225. https://doi.org/10.1177/1534735416642865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lien, G.-S., Wu, M.-S., Bien, M.-Y., Chen, C.-H., Lin, C.-H., & Chen, B.-C. (2014). Epidermal growth factor stimulates nuclear factor-κB activation and heme oxygenase-1 expression via c-Src, NADPH oxidase, PI3K, and Akt in human colon cancer cells. PLoS ONE, 9(8), e104891. https://doi.org/10.1371/journal.pone.0104891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, S., Chen, W., Zhang, X., Lin, S., & Chen, Z. (2016). Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-κB signal pathway. International Journal of Oncology, 48(4), 1391–1398. https://doi.org/10.3892/ijo.2016.3368.

    Article  CAS  PubMed  Google Scholar 

  79. Hussain, A. R., Ahmed, S. O., Ahmed, M., Khan, O. S., Al Abdulmohsen, S., Platanias, L. C., et al. (2012). Cross-talk between NFkB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PloS One, 7(6), e39945. https://doi.org/10.1371/journal.pone.0039945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M., & Donner, D. B. (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 401(6748), 82–85.

    CAS  PubMed  Google Scholar 

  81. Romashkova, J. A., & Makarov, S. S. (1999). NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 401(6748), 86–90.

    CAS  PubMed  Google Scholar 

  82. Sizemore, N., Leung, S., & Stark, G. R. (1999). Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Molecular and Cellular Biology, 19(7), 4798–4805. https://doi.org/10.1128/mcb.19.7.4798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xie, P., Browning, D. D., Hay, N., Mackman, N., & Ye, R. D. (2000). Activation of NF-kappa B by bradykinin through a Galpha(q)- and Gbeta gamma-dependent pathway that involves phosphoinositide 3-kinase and Akt. The Journal of Biological Chemistry, 275(32), 24907–24914. https://doi.org/10.1074/jbc.M001051200.

    Article  CAS  PubMed  Google Scholar 

  84. Madrid, L. V., Mayo, M. W., Reuther, J. Y., & Baldwin, A. S. (2001). Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-κB through utilization of the IκB kinase and activation of the mitogen-activated protein kinase p38. Journal of Biological Chemistry, 276(22), 18934–18940. https://doi.org/10.1074/jbc.M101103200.

    Article  CAS  PubMed  Google Scholar 

  85. Meng, F., Liu, L., Chin, P. C., & D’Mello, S. R. (2002). Akt is a downstream target of NF-kappa B. The Journal of biological chemistry, 277(33), 29674–29680.

    CAS  PubMed  Google Scholar 

  86. Cahill, C. M., & Rogers, J. T. (2008). Interleukin (IL) 1β induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IκB kinase α pathway targeting activator protein-1. Journal of Biological Chemistry, 283(38), 25900–25912. https://doi.org/10.1074/jbc.M707692200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bai, D., Ueno, L., & Vogt, P. K. (2009). Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. International journal of cancer, 125(12), 2863–2870.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kloo, B., Nagel, D., Pfeifer, M., Grau, M., Düwel, M., Vincendeau, M., et al. (2011). Critical role of PI3K signaling for NF-kappaB-dependent survival in a subset of activated B-cell-like diffuse large B-cell lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 272–277.

    CAS  PubMed  Google Scholar 

  89. Cheng, J., Phong, B., Wilson, D. C., Hirsch, R., & Kane, L. P. (2011). Akt fine-tunes NF-κB-dependent gene expression during T cell activation. The Journal of biological chemistry, 286(41), 36076–36085.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hutti, J. E., Pfefferle, A. D., Russell, S. C., Sircar, M., Perou, C. M., & Baldwin, A. S. (2012). Oncogenic PI3K mutations lead to NF-B-dependent cytokine expression following growth factor deprivation. Cancer Research, 72(13), 3260–3269. https://doi.org/10.1158/0008-5472.CAN-11-4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dan, H. C., Ebbs, A., Pasparakis, M., Van Dyke, T., Basseres, D. S., & Baldwin, A. S. (2014). Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα). The Journal of biological chemistry, 289(36), 25227–25240.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kwon, H.-J., Choi, G.-E., Ryu, S., Kwon, S. J., Kim, S. C., Booth, C., et al. (2016). Stepwise phosphorylation of p65 promotes NF-κB activation and NK cell responses during target cell recognition. Nature communications, 7, 11686.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mercurio, F. (1997). IKK-1 and IKK-2: cytokine-activated IB kinases essential for NF-B activation. Science, 278(5339), 860–866. https://doi.org/10.1126/science.278.5339.860.

    Article  CAS  PubMed  Google Scholar 

  94. Delhase, M., Hayakawa, M., Chen, Y., & Karin, M. (1999). Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science (New York, N.Y.), 284(5412), 309–313. https://doi.org/10.1126/science.284.5412.309

  95. Hinz, M., & Scheidereit, C. (2014). The IκB kinase complex in NF-κB regulation and beyond. EMBO reports, 15(1), 46–61. https://doi.org/10.1002/embr.201337983.

    Article  CAS  PubMed  Google Scholar 

  96. Katoh, M., & Katoh, M. (2007). STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer (Review). International Journal of Molecular Medicine, 19(2), 273–278.

    CAS  PubMed  Google Scholar 

  97. Katoh, M., & Katoh, M. (2009). Transcriptional mechanisms of WNT5A based on NF-kappaB, Hedgehog, TGFbeta, and Notch signaling cascades. International journal of molecular medicine, 23(6), 763–769.

    CAS  PubMed  Google Scholar 

  98. Katula, K. S., Joyner-Powell, N. B., Hsu, C.-C., & Kuk, A. (2012). Differential regulation of the mouse and human Wnt5a alternative promoters A and B. DNA and Cell Biology, 31(11), 1585–1597. https://doi.org/10.1089/dna.2012.1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Alquézar, C., de la Encarnación, A., Moreno, F., López de Munain, A., & Martín-Requero, Á. (2016). Progranulin deficiency induces overactivation of WNT5A expression via TNF-α/NF-κB pathway in peripheral cells from frontotemporal dementia-linked granulin mutation carriers. Journal of Psychiatry & Neuroscience, 41(4), 225–239. https://doi.org/10.1503/jpn.150131.

    Article  Google Scholar 

  100. Arabzadeh, S., Hossein, G., Salehi-Dulabi, Z., & Zarnani, A. H. (2016). WNT5A-ROR2 is induced by inflammatory mediators and is involved in the migration of human ovarian cancer cell line SKOV-3. Cellular & molecular biology letters, 21, 9.

    Google Scholar 

  101. DiDonato, J. A., Mercurio, F., & Karin, M. (2012). NF-κB and the link between inflammation and cancer. Immunological Reviews, 246(1), 379–400. https://doi.org/10.1111/j.1600-065X.2012.01099.x.

    Article  CAS  PubMed  Google Scholar 

  102. Chang, Q., Bournazou, E., Sansone, P., Berishaj, M., Gao, S. P., Daly, L., et al. (2013). The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia, 15(7), 848–IN45. https://doi.org/10.1593/neo.13706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Johnson, D. E., O’Keefe, R. A., & Grandis, J. R. (2018). Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature Reviews Clinical Oncology, 15(4), 234–248. https://doi.org/10.1038/nrclinonc.2018.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rozovski, U., Harris, D. M., Li, P., Liu, Z., Jain, P., Ferrajoli, A., et al. (2019). STAT3-induced Wnt5a provides chronic lymphocytic leukemia cells with survival advantage. The Journal of Immunology, 203(11), 3078–3085. https://doi.org/10.4049/jimmunol.1900389.

    Article  CAS  PubMed  Google Scholar 

  105. Li, P., Harris, D., Liu, Z., Liu, J., Keating, M., & Estrov, Z. (2010). Stat3 activates the receptor tyrosine kinase like orphan receptor-1 gene in chronic lymphocytic leukemia cells. PLOS ONE, 5(7), e11859. https://doi.org/10.1371/journal.pone.0011859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rossi, J.-F., Lu, Z.-Y., Jourdan, M., & Klein, B. (2015). Interleukin-6 as a therapeutic target. Clinical Cancer Research, 21(6), 1248–1257. https://doi.org/10.1158/1078-0432.CCR-14-2291.

    Article  CAS  PubMed  Google Scholar 

  107. Klein, U., Tu, Y., Stolovitzky, G. A., Mattioli, M., Cattoretti, G., Husson, H., et al. (2001). Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. The Journal of Experimental Medicine, 194(11), 1625–1638. https://doi.org/10.1084/jem.194.11.1625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. DaneshManesh, A. H., Mikaelsson, E., Jeddi-Tehrani, M., Bayat, A. A., Ghods, R., Ostadkarampour, M., et al. (2008). Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. International Journal of Cancer, 123(5), 1190–1195. https://doi.org/10.1002/ijc.23587.

    Article  CAS  PubMed  Google Scholar 

  109. Rabbani, H., Ostadkarampour, M., Danesh Manesh, A. H., Basiri, A., Jeddi-Tehrani, M., & Forouzesh, F. (2010). Expression of ROR1 in patients with renal cancer—a potential diagnostic marker. Iranian Biomedical Journal, 14(3), 77–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamaguchi, T., Yanagisawa, K., Sugiyama, R., Hosono, Y., Shimada, Y., Arima, C., et al. (2012). NKX2-1/TITF1/TTF-1-induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell, 21(3), 348–361. https://doi.org/10.1016/j.ccr.2012.02.008.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, S., Chen, L., Wang-Rodriguez, J., Zhang, L., Cui, B., Frankel, W., et al. (2012). The onco-embryonic antigen ROR1 is expressed by a variety of human cancers. The American Journal of Pathology, 181(6), 1903–1910. https://doi.org/10.1016/j.ajpath.2012.08.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, S., Chen, L., Cui, B., Chuang, H.-Y., Yu, J., Wang-Rodriguez, J., et al. (2012). ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS ONE, 7(3), e31127. https://doi.org/10.1371/journal.pone.0031127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, H., Qiu, J., Ye, C., Yang, D., Gao, L., Su, Y., et al. (2014). ROR1 expression correlated with poor clinical outcome in human ovarian cancer. Scientific Reports, 4, 5811. https://doi.org/10.1038/srep05811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zheng, Y.-Z., Ma, R., Zhou, J.-K., Guo, C.-L., Wang, Y.-S., Li, Z.-G., et al. (2016). ROR1 is a novel prognostic biomarker in patients with lung adenocarcinoma. Scientific Reports, 6(1), 36447. https://doi.org/10.1038/srep36447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. O’Connell, M. P., Marchbank, K., Webster, M. R., Valiga, A. A., Kaur, A., Vultur, A., et al. (2013). Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discovery, 3(12), 1378–1393. https://doi.org/10.1158/2159-8290.CD-13-0005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dissanayake, S. K., Olkhanud, P. B., O’Connell, M. P., Carter, A., French, A. D., Camilli, T. C., et al. (2008). Wnt5A regulates expression of tumor-associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation. Cancer Research, 68(24), 10205–10214. https://doi.org/10.1158/0008-5472.CAN-08-2149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Prasad, C. P., Mohapatra, P., & Andersson, T. (2015). Therapy for BRAFi-resistant melanomas: is WNT5A the answer? Cancers, 7(3), 1900–1924. https://doi.org/10.3390/cancers7030868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yu, C.-H., Nguyen, T. T. K., Irvine, K. M., Sweet, M. J., Frazer, I. H., & Blumenthal, A. (2014). Recombinant Wnt3a and Wnt5a elicit macrophage cytokine production and tolerization to microbial stimulation via Toll-like receptor 4: innate immunity. European Journal of Immunology, 44(5), 1480–1490. https://doi.org/10.1002/eji.201343959.

    Article  CAS  PubMed  Google Scholar 

  119. Li, S., Wang, W., Zhang, N., Ma, T., & Zhao, C. (2014). IL-1β mediates MCP-1 induction by Wnt5a in gastric cancer cells. BMC Cancer, 14(1), 480. https://doi.org/10.1186/1471-2407-14-480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kim, J., Kim, D. W., Chang, W., Choe, J., Kim, J., Park, C.-S., et al. (2012). Wnt5a is secreted by follicular dendritic cells to protect germinal center B cells via Wnt/Ca 2+ /NFAT/NF-κB–B cell lymphoma 6 signaling. The Journal of Immunology, 188(1), 182–189. https://doi.org/10.4049/jimmunol.1102297.

    Article  CAS  PubMed  Google Scholar 

  121. Su Jung, Y., Young Lee, H., Doo Kim, S., Seong Park, J., Kuk Kim, J., Suh, P.-G., & Bae, Y.-S. (2013). Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils. Experimental & Molecular Medicine, 45(6), e27–e27. https://doi.org/10.1038/emm.2013.48.

    Article  CAS  Google Scholar 

  122. Pukrop, T., Klemm, F., Hagemann, T., Gradl, D., Schulz, M., Siemes, S., et al. (2006). Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5454–5459. https://doi.org/10.1073/pnas.0509703103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bergenfelz, C., Medrek, C., Ekström, E., Jirström, K., Janols, H., Wullt, M., … Leandersson, K. (2012). Wnt5a induces a tolerogenic phenotype of macrophages in sepsis and breast cancer patients. Journal of immunology (Baltimore, Md. : 1950), 188(11), 5448–58.

  124. Smith, K., Bui, T. D., Poulsom, R., Kaklamanis, L., Williams, G., & Harris, A. L. (1999). Up-regulation of macrophage wnt gene expression in adenoma-carcinoma progression of human colorectal cancer. British Journal of Cancer, 81(3), 496–502. https://doi.org/10.1038/sj.bjc.6690721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Relling, I., Akcay, G., Fangmann, D., Knappe, C., Schulte, D. M., Hartmann, K., et al. (2018). Role of wnt5a in metabolic inflammation in humans. The Journal of Clinical Endocrinology & Metabolism, 103(11), 4253–4264. https://doi.org/10.1210/jc.2018-01007.

    Article  Google Scholar 

  126. Nitzki, F., Zibat, A., König, S., Wijgerde, M., Rosenberger, A., Brembeck, F. H., et al. (2010). Tumor stroma–derived Wnt5a induces differentiation of basal cell carcinoma of Ptch-mutant mice via CaMKII. Cancer Research, 70(7), 2739–2748. https://doi.org/10.1158/0008-5472.CAN-09-3743.

    Article  CAS  PubMed  Google Scholar 

  127. Mehmeti, M., Bergenfelz, C., Källberg, E., Millrud, C. R., Björk, P., Ivars, F., et al. (2019). Wnt5a is a TLR2/4-ligand that induces tolerance in human myeloid cells. Communications biology, 2, 176.

    PubMed  PubMed Central  Google Scholar 

  128. Halleskog, C., Dijksterhuis, J. P., Kilander, M. B. C., Becerril-Ortega, J., Villaescusa, J. C., Lindgren, E., et al. (2012). Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. Journal of Neuroinflammation, 9(1), 675. https://doi.org/10.1186/1742-2094-9-111.

    Article  CAS  Google Scholar 

  129. Li, B., Zhong, L., Yang, X., Andersson, T., Huang, M., & Tang, S.-J. (2011). WNT5A signaling contributes to Aβ-induced neuroinflammation and neurotoxicity. PLoS ONE, 6(8), e22920. https://doi.org/10.1371/journal.pone.0022920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li, B., Shi, Y., Shu, J., Gao, J., Wu, P., & Tang, S.-J. (2013). Wingless-type mammary tumor virus integration site family, member 5A (Wnt5a) regulates human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein 120 (gp120)-induced expression of pro-inflammatory cytokines via the Ca2+/calmodulin-dependent protein kinase II (CaMKII) and c-Jun N-terminal kinase (JNK) signaling pathways. Journal of Biological Chemistry, 288(19), 13610–13619. https://doi.org/10.1074/jbc.M112.381046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jang, J., Jung, Y., Kim, Y., Jho, E., & Yoon, Y. (2017). LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974. Scientific Reports, 7(1), 41612. https://doi.org/10.1038/srep41612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Valencia, J., Martínez, V. G., Hidalgo, L., Hernández-López, C., Canseco, N. M., Vicente, A., … Sacedón, R. (2014). Wnt5a signaling increases IL-12 secretion by human dendritic cells and enhances IFN-γ production by CD4+ T cells. Immunology letters, 162(1 Pt A), 188–99.

  133. Ekström, E. J., Bergenfelz, C., von Bülow, V., Serifler, F., Carlemalm, E., Jönsson, G., et al. (2014). WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Molecular Cancer, 13(1), 88. https://doi.org/10.1186/1476-4598-13-88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Maiti, G., Naskar, D., & Sen, M. (2012). The Wingless homolog Wnt5a stimulates phagocytosis but not bacterial killing. Proceedings of the National Academy of Sciences, 109(41), 16600–16605. https://doi.org/10.1073/pnas.1207789109.

    Article  Google Scholar 

  135. Bergenfelz, C., Janols, H., Wullt, M., Jirström, K., Bredberg, A., & Leandersson, K. (2013). Wnt5a inhibits human monocyte-derived myeloid dendritic cell generation. Scandinavian Journal of Immunology, 78(2), 194–204. https://doi.org/10.1111/sji.12075.

    Article  CAS  PubMed  Google Scholar 

  136. Fuster, J. J., Zuriaga, M. A., Ngo, D. T.-M., Farb, M. G., Aprahamian, T., Yamaguchi, T. P., et al. (2015). Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion. Diabetes, 64(4), 1235–1248. https://doi.org/10.2337/db14-1164.

    Article  CAS  PubMed  Google Scholar 

  137. Zuriaga, M. A., Fuster, J. J., Farb, M. G., MacLauchlan, S., Bretón-Romero, R., Karki, S., et al. (2017). Activation of non-canonical WNT signaling in human visceral adipose tissue contributes to local and systemic inflammation. Scientific Reports, 7(1), 17326. https://doi.org/10.1038/s41598-017-17509-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Abraityte, A., Lunde, I. G., Askevold, E. T., Michelsen, A. E., Christensen, G., Aukrust, P., et al. (2017). Wnt5a is associated with right ventricular dysfunction and adverse outcome in dilated cardiomyopathy. Scientific Reports, 7(1), 3490. https://doi.org/10.1038/s41598-017-03625-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, W., Yu, X., Wu, C., & Jin, H. (2017). Differential effects of Wnt5a on the proliferation, differentiation and inflammatory response of keratinocytes. Molecular Medicine Reports. https://doi.org/10.3892/mmr.2017.8358.

  140. Oderup, C., LaJevic, M., & Butcher, E. C. (2013). Canonical and noncanonical Wnt proteins program dendritic cell responses for tolerance. The Journal of Immunology, 190(12), 6126–6134. https://doi.org/10.4049/jimmunol.1203002.

    Article  CAS  PubMed  Google Scholar 

  141. Liu, M., Zhao, Y., Wang, C., Luo, H., & A, P., & Ye, L. (2019). Interleukin-17 plays a role in pulp inflammation partly by WNT5A protein induction. Archives of Oral Biology, 103, 33–39. https://doi.org/10.1016/j.archoralbio.2019.05.003.

  142. Zhao, C., Bu, X., Wang, W., Ma, T., & Ma, H. (2014). GEC-derived SFRP5 inhibits Wnt5a-induced macrophage chemotaxis and activation. PLoS ONE, 9(1), e85058. https://doi.org/10.1371/journal.pone.0085058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kanzawa, M., Semba, S., Hara, S., Itoh, T., & Yokozaki, H. (2013). WNT5A is a key regulator of the epithelial-mesenchymal transition and cancer stem cell properties in human gastric carcinoma cells. Pathobiology : journal of immunopathology, molecular and cellular biology, 80(5), 235–244.

    CAS  Google Scholar 

  144. Hoejberg, L., Bastholt, L., & Schmidt, H. (2012). Interleukin-6 and melanoma. Melanoma Research, 22(5), 327–333. https://doi.org/10.1097/CMR.0b013e3283543d72.

    Article  CAS  PubMed  Google Scholar 

  145. Tsukamoto, H., Fujieda, K., Hirayama, M., Ikeda, T., Yuno, A., Matsumura, K., et al. (2017). Soluble IL6R expressed by myeloid cells reduces tumor-specific Th1 differentiation and drives tumor progression. Cancer Research, 77(9), 2279–2291. https://doi.org/10.1158/0008-5472.CAN-16-2446.

    Article  CAS  PubMed  Google Scholar 

  146. Fisher, D. T., Appenheimer, M. M., & Evans, S. S. (2014). The two faces of IL-6 in the tumor microenvironment. Seminars in Immunology, 26(1), 38–47. https://doi.org/10.1016/j.smim.2014.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Scheller, J., Chalaris, A., Schmidt-Arras, D., & Rose-John, S. (2011). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1813(5), 878–888. https://doi.org/10.1016/j.bbamcr.2011.01.034.

    Article  CAS  Google Scholar 

  148. Mantovani, A., Barajon, I., & Garlanda, C. (2018). IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunological reviews, 281(1), 57–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Balkwill, F. (2004). Cancer and the chemokine network. Nature Reviews Cancer, 4(7), 540–550. https://doi.org/10.1038/nrc1388.

    Article  CAS  PubMed  Google Scholar 

  150. Zlotnik, A. (2006). Chemokines and cancer: chemokines and cancer. International Journal of Cancer, 119(9), 2026–2029. https://doi.org/10.1002/ijc.22024.

    Article  CAS  PubMed  Google Scholar 

  151. Yuan, A., Chen, J. J. W., Yao, P.-L., & Yang, P.-C. (2005). The role of interleukin-8 in cancer cells and microenvironment interaction. Frontiers in Bioscience: A Journal and Virtual Library, 10, 853–865 https://doi.org/10.2741/1579.

    CAS  Google Scholar 

  152. Wu, Saxena, Awaji, & Singh. (2019). Tumor-associated neutrophils in cancer: going pro. Cancers, 11(4), 564. https://doi.org/10.3390/cancers11040564

  153. Xu, J., Zhang, C., He, Y., Wu, H., Wang, Z., Song, W., et al. (2012). Lymphatic endothelial cell-secreted CXCL1 stimulates lymphangiogenesis and metastasis of gastric cancer. International Journal of Cancer, 130(4), 787–797 https://doi.org/10.1002/ijc.26035.

    CAS  PubMed  Google Scholar 

  154. Qian, B.-Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., et al. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 475(7355), 222–225 https://doi.org/10.1038/nature10138.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Mizutani, K., Sud, S., McGregor, N. A., Martinovski, G., Rice, B. T., Craig, M. J., et al. (2009). The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia, 11(11), 1235–1242 https://doi.org/10.1593/neo.09988.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.

    CAS  PubMed  Google Scholar 

  157. Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. Journal of Biological Chemistry, 284(49), 34342–34354 https://doi.org/10.1074/jbc.M109.042671.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Gu, L., Tseng, S., Horner, R. M., Tam, C., Loda, M., & Rollins, B. J. (2000). Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature, 404(6776), 407–411 https://doi.org/10.1038/35006097.

    CAS  PubMed  Google Scholar 

  159. Luther, S. A., & Cyster, J. G. (2001). Chemokines as regulators of T cell differentiation. Nature Immunology, 2(2), 102–107 https://doi.org/10.1038/84205.

    CAS  PubMed  Google Scholar 

  160. Liu, Q., Song, J., Pan, Y., Shi, D., Yang, C., Wang, S., & Xiong, B. (2020). Wnt5a/CaMKII/ERK/CCL2 axis is required for tumor-associated macrophages to promote colorectal cancer progression. International Journal of Biological Sciences, 16(6), 1023–1034 https://doi.org/10.7150/ijbs.40535.

    PubMed  PubMed Central  Google Scholar 

  161. Schmitz, M. L., & Baeuerle, P. A. (1991). The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. The EMBO journal, 10(12), 3805–3817.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Cao, S., Zhang, X., Edwards, J. P., & Mosser, D. M. (2006). NF-κB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. Journal of Biological Chemistry, 281(36), 26041–26050 https://doi.org/10.1074/jbc.M602222200.

    CAS  PubMed  Google Scholar 

  163. Driessler, F., Venstrom, K., Sabat, R., Asadullah, K., & Schottelius, A. J. (2004). Molecular mechanisms of interleukin-10-mediated inhibition of NF-kappaB activity: a role for p50. Clinical and Experimental Immunology, 135(1), 64–73 https://doi.org/10.1111/j.1365-2249.2004.02342.x.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu, Q., Yang, C., Wang, S., Shi, D., Wei, C., Song, J.,…Xiong, B. (2020). Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression (preprint). Cell Communication and Signaling. https://doi.org/10.21203/rs.2.18621/v1

  165. Zarember, K. A., & Godowski, P. J. (2002). Tissue expression of human toll-like receptors and differential regulation of toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. The Journal of Immunology, 168(2), 554–561 https://doi.org/10.4049/jimmunol.168.2.554.

    CAS  PubMed  Google Scholar 

  166. Tran Janco, J. M., Lamichhane, P., Karyampudi, L., & Knutson, K. L. (2015). Tumor-infiltrating dendritic cells in cancer pathogenesis. The Journal of Immunology, 194(7), 2985–2991 https://doi.org/10.4049/jimmunol.1403134.

    PubMed  Google Scholar 

  167. Holtzhausen, A., Zhao, F., Evans, K. S., Tsutsui, M., Orabona, C., Tyler, D. S., & Hanks, B. A. (2015). Melanoma-derived Wnt5a promotes local dendritic-cell expression of IDO and immunotolerance: opportunities for pharmacologic enhancement of immunotherapy. Cancer Immunology Research, 3(9), 1082–1095. https://doi.org/10.1158/2326-6066.CIR-14-0167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhao, F., Xiao, C., Evans, K. S., Theivanthiran, T., DeVito, N., Holtzhausen, A., … Hanks, B. A. (2018). Paracrine Wnt5a-β-catenin signaling triggers a metabolic program that drives dendritic cell tolerization. Immunity, 48(1), 147-160.e7. https://doi.org/10.1016/j.immuni.2017.12.004

  169. Zhou, Z., Chen, H., Xie, R., Wang, H., Li, S., Xu, Q., et al. (2019). Epigenetically modulated FOXM1 suppresses dendritic cell maturation in pancreatic cancer and colon cancer. Molecular Oncology, 13(4), 873–893. https://doi.org/10.1002/1878-0261.12443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Asem, M., Young, A. M., Oyama, C., Claure De La Zerda, A., Liu, Y., Yang, J., et al. (2020). Host Wnt5a potentiates microenvironmental regulation of ovarian cancer metastasis. Cancer Research, 80(5), 1156–1170. https://doi.org/10.1158/0008-5472.CAN-19-1601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Feng, Y., Liang, Y., Zhu, X., Wang, M., Gui, Y., Lu, Q., et al. (2018). The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. Journal of Biological Chemistry, 293(50), 19290–19302. https://doi.org/10.1074/jbc.RA118.005457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Noy, R., & Pollard, J. W. (2014). Tumor-associated macrophages: from mechanisms to therapy. Immunity, 41(1), 49–61. https://doi.org/10.1016/j.immuni.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Liu, Q., Zhu, H., Tiruthani, K., Shen, L., Chen, F., Gao, K., et al. (2018). Nanoparticle-mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B-Raf proto-oncogene mutant melanoma. ACS Nano, 12(2), 1250–1261. https://doi.org/10.1021/acsnano.7b07384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Laeremans, H., Hackeng, T. M., van Zandvoort, M. A. M. J., Thijssen, V. L. J. L., Janssen, B. J. A., Ottenheijm, H. C. J., et al. (2011). Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation, 124(15), 1626–1635. https://doi.org/10.1161/CIRCULATIONAHA.110.976969.

    Article  CAS  PubMed  Google Scholar 

  175. Uitterdijk, A., Hermans, K. C. M., de Wijs-Meijler, D. P. M., Daskalopoulos, E. P., Reiss, I. K., Duncker, D. J., et al. (2016). UM206, a selective Frizzled antagonist, attenuates adverse remodeling after myocardial infarction in swine. Laboratory Investigation; a Journal of Technical Methods and Pathology, 96(2), 168–176. https://doi.org/10.1038/labinvest.2015.139.

    Article  CAS  PubMed  Google Scholar 

  176. Jenei, V., Sherwood, V., Howlin, J., Linnskog, R., Säfholm, A., Axelsson, L., & Andersson, T. (2009). A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion. Proceedings of the National Academy of Sciences, 106(46), 19473–19478. https://doi.org/10.1073/pnas.0909409106.

    Article  Google Scholar 

  177. Sherwood, V., Chaurasiya, S. K., Ekstrom, E. J., Guilmain, W., Liu, Q., Koeck, T., et al. (2014). WNT5A-mediated-catenin-independent signalling is a novel regulator of cancer cell metabolism. Carcinogenesis, 35(4), 784–794. https://doi.org/10.1093/carcin/bgt390.

    Article  CAS  PubMed  Google Scholar 

  178. Zhao, C., Ma, H., Bu, X., Wang, W., & Zhang, N. (2013). SFRP5 inhibits gastric epithelial cell migration induced by macrophage-derived Wnt5a. Carcinogenesis, 34(1), 146–152. https://doi.org/10.1093/carcin/bgs309.

    Article  CAS  PubMed  Google Scholar 

  179. Chien, H.-P., Ueng, S.-H., Chen, S.-C., Chang, Y.-S., Lin, Y.-C., Lo, Y.-F., et al. (2016). Expression of ROR1 has prognostic significance in triple negative breast cancer. Virchows Archiv, 468(5), 589–595. https://doi.org/10.1007/s00428-016-1911-3.

    Article  CAS  PubMed  Google Scholar 

  180. Zhou, J.-K., Zheng, Y.-Z., Liu, X.-S., Gou, Q., Ma, R., Guo, C.-L., et al. (2017). ROR1 expression as a biomarker for predicting prognosis in patients with colorectal cancer. Oncotarget, 8(20). https://doi.org/10.18632/oncotarget.15860.

  181. Dave, H., Anver, M. R., Butcher, D. O., Brown, P., Khan, J., Wayne, A. S., et al. (2012). Restricted cell surface expression of receptor tyrosine kinase ROR1 in pediatric B-lineage acute lymphoblastic leukemia suggests targetability with therapeutic monoclonal antibodies. PloS One, 7(12), e52655. https://doi.org/10.1371/journal.pone.0052655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Balakrishnan, A., Goodpaster, T., Randolph-Habecker, J., Hoffstrom, B. G., Jalikis, F. G., Koch, L. K., et al. (2017). Analysis of ROR1 protein expression in human cancer and normal tissues. Clinical Cancer Research, 23(12), 3061–3071 https://doi.org/10.1158/1078-0432.CCR-16-2083.

    CAS  PubMed  Google Scholar 

  183. Hojjat-Farsangi, M., Ghaemimanesh, F., Daneshmanesh, A. H., Bayat, A.-A., Mahmoudian, J., Jeddi-Tehrani, M., et al. (2013). Inhibition of the receptor tyrosine kinase ROR1 by anti-ROR1 monoclonal antibodies and siRNA induced apoptosis of melanoma cells. PLoS ONE, 8(4), e61167. https://doi.org/10.1371/journal.pone.0061167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Choi, M. Y., Widhopf, G. F., Wu, C. C. N., Cui, B., Lao, F., Sadarangani, A., et al. (2015). Pre-clinical specificity and safety of UC-961, a first-in-class monoclonal antibody targeting ROR1. Clinical Lymphoma Myeloma and Leukemia, 15, S167–S169. https://doi.org/10.1016/j.clml.2015.02.010.

    Article  Google Scholar 

  185. Yin, Z., Gao, M., Chu, S., Su, Y., Ye, C., Wang, Y., et al. (2017). Antitumor activity of a newly developed monoclonal antibody against ROR1 in ovarian cancer cells. Oncotarget, 8(55) https://doi.org/10.18632/oncotarget.21618.

  186. Choi, M. Y., Widhopf, G. F., Ghia, E. M., Kidwell, R. L., Hasan, M. K., Yu, J., … Kipps, T. J. (2018). Phase I trial: cirmtuzumab inhibits ROR1 signaling and stemness signatures in patients with chronic lymphocytic leukemia. Cell Stem Cell, 22(6), 951-959.e3. https://doi.org/10.1016/j.stem.2018.05.018

  187. Hudecek, M., Schmitt, T. M., Baskar, S., Lupo-Stanghellini, M. T., Nishida, T., Yamamoto, T. N., et al. (2010). The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood, 116(22), 4532–4541. https://doi.org/10.1182/blood-2010-05-283309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gohil, S. H., Paredes-Moscosso, S. R., Harrasser, M., Vezzalini, M., Scarpa, A., Morris, E., et al. (2017). An ROR1 bi-specific T-cell engager provides effective targeting and cytotoxicity against a range of solid tumors. Oncoimmunology, 6(7), e1326437. https://doi.org/10.1080/2162402X.2017.1326437.

  189. Baskar, S., Wiestner, A., Wilson, W. H., Pastan, I., & Rader, C. (2012). Targeting malignant B cells with an immunotoxin against ROR1. mAbs, 4(3), 349–361. https://doi.org/10.4161/mabs.19870

  190. Imani Fooladi, A. A., Mahmoodzadeh Hosseini, H., & Amani, J. (2015). An in silico chimeric vaccine targeting breast cancer containing inherent adjuvant. Iranian Journal of Cancer Prevention, 8(3), e2326. https://doi.org/10.17795/ijcp2326.

    Article  PubMed  PubMed Central  Google Scholar 

  191. de Goeij, B. E., & Lambert, J. M. (2016). New developments for antibody-drug conjugate-based therapeutic approaches. Current Opinion in Immunology, 40, 14–23. https://doi.org/10.1016/j.coi.2016.02.008.

    Article  CAS  PubMed  Google Scholar 

  192. Bemani, P., Mohammadi, M., & Hakakian, A. (2018). Anti-ROR1 scFv-EndoG as a novel anti-cancer therapeutic drug. Asian Pacific journal of cancer prevention: APJCP, 19(1), 97–102. https://doi.org/10.22034/APJCP.2018.19.1.97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hojjat-Farsangi, M., Daneshmanesh, A. H., Khan, A. S., Shetye, J., Mozaffari, F., Kharaziha, P., et al. (2018). First-in-class oral small molecule inhibitor of the tyrosine kinase ROR1 (KAN0439834) induced significant apoptosis of chronic lymphocytic leukemia cells. Leukemia, 32(10), 2291–2295. https://doi.org/10.1038/s41375-018-0113-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hugo, W., Zaretsky, J. M., Sun, L., Song, C., Moreno, B. H., Hu-Lieskovan, S., et al. (2016). Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell, 165(1), 35–44. https://doi.org/10.1016/j.cell.2016.02.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bonaventura, P., Shekarian, T., Alcazer, V., Valladeau-Guilemond, J., Valsesia-Wittmann, S., Amigorena, S., et al. (2019). Cold tumors: a therapeutic challenge for immunotherapy. Frontiers in Immunology, 10, 168. https://doi.org/10.3389/fimmu.2019.00168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the anonymous reviewer whose comments helped us to improve our manuscript. This research was supported by grants BID-PICT-2007-1010 and BID-PICT2011-1605 from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and grants from Fundación Científica Felipe Fiorellino, Fundación Alberto Roemmers, and the Instituto Nacional de Cancer. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) provided fellowships to GB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Lopez-Bergami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Bergami, P., Barbero, G. The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer Metastasis Rev 39, 933–952 (2020). https://doi.org/10.1007/s10555-020-09878-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09878-7

Keywords

Navigation