Skip to main content

Advertisement

Log in

piRNAs: biogenesis and their potential roles in cancer

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

With the length of about 26–31 nt, PIWI-interacting RNA (piRNA) is a small non-coding RNA (ncRNA) that interacts with PIWI proteins to form the piRNA silencing complex (piRISC). PIWI is a subfamily of Argonaute, and piRNA must bind to PIWI to exert its regulatory role. Current studies indicated that piRNA and PIWI are significantly abnormally expressed in gastric, breast, kidney, colon, and lung cancers, and are involved in the initiation, progression, and metastasis of cancers, which may be the potential diagnostic tools, prognostic markers, and therapeutic targets for cancers. By reviewing piRNA recent studies, this research summarized the mechanism of piRNA generation and the functions of piRNA/PIWI in gastric, breast, kidney, colon, and lung cancers, providing a reference value for further piRNA research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferreira, H. J., & Esteller, M. (2018). Non-coding RNAs, epigenetics, and cancer: tying it all together. Cancer Metastasis Reviews, 37(1), 55–73. https://doi.org/10.1007/s10555-017-9715-8.

    Article  CAS  PubMed  Google Scholar 

  2. Xiao, Y., & Ke, A. (2016). PIWI takes a giant step. Cell, 167(2), 310–312. https://doi.org/10.1016/j.cell.2016.09.043.

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez-Leal, D., Castillo-Cobian, A., Rodriguez-Arevalo, I., & Vielle-Calzada, J. P. (2016). A primary sequence analysis of the ARGONAUTE protein family in plants. Frontiers in Plant Science, 7, 1347. https://doi.org/10.3389/fpls.2016.01347.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Russell, S. J., & LaMarre, J. (2018). Transposons and the PIWI pathway: genome defense in gametes and embryos. Reproduction, 156(4), R111–r124. https://doi.org/10.1530/rep-18-0218.

    Article  CAS  PubMed  Google Scholar 

  5. Theron, E., Maupetit-Mehouas, S., Pouchin, P., Baudet, L., Brasset, E., & Vaury, C. (2018). The interplay between the Argonaute proteins Piwi and Aub within Drosophila germarium is critical for oogenesis, piRNA biogenesis and TE silencing. Nucleic Acids Research, 46(19), 10052–10065. https://doi.org/10.1093/nar/gky695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weng, W., Li, H., & Goel, A. (2019). Piwi-interacting RNAs (piRNAs) and cancer: emerging biological concepts and potential clinical implications. Biochimica Et Biophysica Acta. Reviews on Cancer, 1871(1), 160–169. https://doi.org/10.1016/j.bbcan.2018.12.005.

    Article  CAS  PubMed  Google Scholar 

  7. Chalbatani, G. M., Dana, H., Memari, F., Gharagozlou, E., Ashjaei, S., Kheirandish, P., Marmari, V., Mahmoudzadeh, H., Mozayani, F., Maleki, A. R., Sadeghian, E., Nia, E. Z., Miri, S. R., Nia, N. Z., Rezaeian, O., Eskandary, A., Razavi, N., Shirkhoda, M., & Rouzbahani, F. N. (2019). Biological function and molecular mechanism of piRNA in cancer. Pract Lab Med, 13, e00113. https://doi.org/10.1016/j.plabm.2018.e00113.

    Article  PubMed  Google Scholar 

  8. Trzybulska, D., Vergadi, E., & Tsatsanis, C. (2018). miRNA and other non-coding RNAs as promising diagnostic markers. Ejifcc, 29(3), 221–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Krishnan, P., & Damaraju, S. (2018). The challenges and opportunities in the clinical application of noncoding RNAs: the road map for miRNAs and piRNAs in cancer diagnostics and prognostics. Int J Genomics, 2018, 5848046. https://doi.org/10.1155/2018/5848046.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Y., Liu, W., Li, R., Gu, J., Wu, P., Peng, C., et al. (2018). Structural insights into the sequence-specific recognition of Piwi by Drosophila Papi. Proceedings of the National Academy of Sciences of the United States of America, 115(13), 3374–3379. https://doi.org/10.1073/pnas.1717116115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goriaux, C., Desset, S., Renaud, Y., Vaury, C., & Brasset, E. (2014). Transcriptional properties and splicing of the flamenco piRNA cluster. EMBO Reports, 15(4), 411–418. https://doi.org/10.1002/embr.201337898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andersen, P. R., Tirian, L., Vunjak, M., & Brennecke, J. (2017). A heterochromatin-dependent transcription machinery drives piRNA expression. Nature, 549(7670), 54–59. https://doi.org/10.1038/nature23482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dennis, C., Zanni, V., Brasset, E., Eymery, A., Zhang, L., Mteirek, R., Jensen, S., Rong, Y. S., & Vaury, C. (2013). “Dot COM”, a nuclear transit center for the primary piRNA pathway in Drosophila. PLoS One, 8(9), e72752. https://doi.org/10.1371/journal.pone.0072752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dennis, C., Brasset, E., & Vaury, C. (2019). flam piRNA precursors channel from the nucleus to the cytoplasm in a temporally regulated manner along Drosophila oogenesis. Mob DNA, 10, 28. https://doi.org/10.1186/s13100-019-0170-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murota, Y., Ishizu, H., Nakagawa, S., Iwasaki, Y. W., Shibata, S., Kamatani, M. K., Saito, K., Okano, H., Siomi, H., & Siomi, M. C. (2014). Yb integrates piRNA intermediates and processing factors into perinuclear bodies to enhance piRISC assembly. Cell Reports, 8(1), 103–113. https://doi.org/10.1016/j.celrep.2014.05.043.

    Article  CAS  PubMed  Google Scholar 

  16. Szakmary, A., Reedy, M., Qi, H., & Lin, H. (2009). The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster. The Journal of Cell Biology, 185(4), 613–627. https://doi.org/10.1083/jcb.200903034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pandey, R. R., Homolka, D., Chen, K. M., Sachidanandam, R., Fauvarque, M. O., & Pillai, R. S. (2017). Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries. PLoS Genetics, 13(8), e1006956. https://doi.org/10.1371/journal.pgen.1006956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ge, D. T., Wang, W., Tipping, C., Gainetdinov, I., Weng, Z., & Zamore, P. D. (2019). The RNA-binding ATPase, Armitage, couples piRNA amplification in Nuage to phased piRNA production on mitochondria. Molecular Cell, 74(5), 982–995 e986. https://doi.org/10.1016/j.molcel.2019.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Munafo, M., Manelli, V., Falconio, F. A., Sawle, A., Kneuss, E., Eastwood, E. L., et al. (2019). Daedalus and Gasz recruit Armitage to mitochondria, bringing piRNA precursors to the biogenesis machinery. Genes & Development, 33(13–14), 844–856. https://doi.org/10.1101/gad.325662.119.

    Article  CAS  Google Scholar 

  20. Ipsaro, J. J., Haase, A. D., Knott, S. R., Joshua-Tor, L., & Hannon, G. J. (2012). The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature, 491(7423), 279–283. https://doi.org/10.1038/nature11502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Izumi, N., Shoji, K., Sakaguchi, Y., Honda, S., Kirino, Y., Suzuki, T., Katsuma, S., & Tomari, Y. (2016). Identification and functional analysis of the pre-piRNA 3′ trimmer in silkworms. Cell, 164(5), 962–973. https://doi.org/10.1016/j.cell.2016.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirakata, S., Ishizu, H., Fujita, A., Tomoe, Y., & Siomi, M. C. (2019). Requirements for multivalent Yb body assembly in transposon silencing in Drosophila. EMBO Rep, 20(7), e47708. https://doi.org/10.15252/embr.201947708.

    Article  CAS  PubMed  Google Scholar 

  23. Ishizu, H., Kinoshita, T., Hirakata, S., Komatsuzaki, C., & Siomi, M. C. (2019). Distinct and collaborative functions of Yb and Armitage in transposon-targeting piRNA biogenesis. Cell Rep, 27(6), 1822-1835.e1828. https://doi.org/10.1016/j.celrep.2019.04.029.

    Article  CAS  Google Scholar 

  24. Cheng, J., Guo, J. M., Xiao, B. X., Miao, Y., Jiang, Z., Zhou, H., et al. (2011). piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clinica Chimica Acta, 412(17–18), 1621–1625. https://doi.org/10.1016/j.cca.2011.05.015.

    Article  CAS  Google Scholar 

  25. Lin, X., Xia, Y., Hu, D., Mao, Q., Yu, Z., Zhang, H., et al. (2019). Transcriptomewide piRNA profiling in human gastric cancer. Oncology Reports. https://doi.org/10.3892/or.2019.7073.

  26. Martinez, V. D., Enfield, K. S. S., Rowbotham, D. A., & Lam, W. L. (2016). An atlas of gastric PIWI-interacting RNA transcriptomes and their utility for identifying signatures of gastric cancer recurrence. Gastric Cancer, 19(2), 660–665. https://doi.org/10.1007/s10120-015-0487-y.

    Article  CAS  PubMed  Google Scholar 

  27. Lin, X., Xia, Y., Hu, D., Mao, Q., Yu, Z., Zhang, H., Li, C., Chen, G., Liu, F., Zhu, W., Shi, Y., Zhang, H., Zheng, J., Sun, T., Xu, J., Chao, H. H., Zheng, X., & Luο, X. (2019). Transcriptomewide piRNA profiling in human gastric cancer. Oncology Reports, 41(5), 3089–3099. https://doi.org/10.3892/or.2019.7073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cui, L., Lou, Y., Zhang, X., Zhou, H., Deng, H., Song, H., Yu, X., Xiao, B., Wang, W., & Guo, J. (2011). Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clinical Biochemistry, 44(13), 1050–1057. https://doi.org/10.1016/j.clinbiochem.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng, J., Deng, H., Xiao, B., Zhou, H., Zhou, F., Shen, Z., & Guo, J. (2012). piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Letters, 315(1), 12–17. https://doi.org/10.1016/j.canlet.2011.10.004.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y., Liu, Y., Shen, X., Zhang, X., Chen, X., Yang, C., & Gao, H. (2012). The PIWI protein acts as a predictive marker for human gastric cancer. International Journal of Clinical and Experimental Pathology, 5(4), 315–325.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao, C. L., Sun, R., Li, D. H., & Gong, F. (2018). PIWI-like protein 1 upregulation promotes gastric cancer invasion and metastasis. Onco Targets Ther, 11, 8783–8789. https://doi.org/10.2147/OTT.S186827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Araujo, T., Khayat, A., Quintana, L., Calcagno, D., Mourao, R., Modesto, A., et al. (2018). Piwi like RNA-mediated gene silencing 1 gene as a possible major player in gastric cancer. World Journal of Gastroenterology, 24(47), 5338–5350. https://doi.org/10.3748/wjg.v24.i47.5338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hashim, A., Rizzo, F., Marchese, G., Ravo, M., Tarallo, R., Nassa, G., et al. (2014). RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget, 5(20), 9901–9910. https://doi.org/10.18632/oncotarget.2476.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Krishnan, P., Ghosh, S., Graham, K., Mackey, J. R., Kovalchuk, O., & Damaraju, S. (2016). Piwi-interacting RNAs and PIWI genes as novel prognostic markers for breast cancer. Oncotarget, 7(25), 37944–37956. https://doi.org/10.18632/oncotarget.9272.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang, G., Hu, H., Xue, X., Shen, S., Gao, E., Guo, G., Shen, X., & Zhang, X. (2013). Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clinical & Translational Oncology, 15(7), 563–568. https://doi.org/10.1007/s12094-012-0966-0.

    Article  CAS  Google Scholar 

  36. Oner, C., Turgut Cosan, D., & Colak, E. (2016). Estrogen and androgen hormone levels modulate the expression of PIWI interacting RNA in prostate and breast cancer. PLoS One, 11(7), e0159044. https://doi.org/10.1371/journal.pone.0159044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tan, L., Mai, D., Zhang, B., Jiang, X., Zhang, J., Bai, R., Ye, Y., Li, M., Pan, L., Su, J., Zheng, Y., Liu, Z., Zuo, Z., Zhao, Q., Li, X., Huang, X., Yang, J., Tan, W., Zheng, J., & Lin, D. (2019). PIWI-interacting RNA-36712 restrains breast cancer progression and chemoresistance by interaction with SEPW1 pseudogene SEPW1P RNA. Molecular Cancer, 18(1), 1–15. https://doi.org/10.1186/s12943-019-0940-3.

    Article  Google Scholar 

  38. Fu, A., Jacobs, D. I., Hoffman, A. E., Zheng, T., & Zhu, Y. (2015). PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis, 36(10), 1094–1102. https://doi.org/10.1093/carcin/bgv105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, H., Ren, Y., Xu, H., Pang, D., Duan, C., & Liu, C. (2013). The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surgical Oncology, 22(4), 217–223. https://doi.org/10.1016/j.suronc.2013.07.001.

    Article  PubMed  Google Scholar 

  40. Litwin, M., Szczepanska-Buda, A., Michalowska, D., Grzegrzolka, J., Piotrowska, A., Gomulkiewicz, A., et al. (2018). Aberrant expression of PIWIL1 and PIWIL2 and their clinical significance in ductal breast carcinoma. Anticancer Res, 38(4), 2021–2030. https://doi.org/10.21873/anticanres.12441.

    Article  CAS  PubMed  Google Scholar 

  41. Heng, Z. S. L., Lee, J. Y., Subhramanyam, C. S., Wang, C., Thanga, L. Z., & Hu, Q. (2018). The role of 17betaestradiolinduced upregulation of Piwilike 4 in modulating gene expression and motility in breast cancer cells. Oncology Reports, 40(5), 2525–2535. https://doi.org/10.3892/or.2018.6676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Y., Wu, X., Gao, H., Jin, J. M., Li, A. X., Kim, Y. S., Pal, S. K., Nelson, R. A., Lau, C. M., Guo, C., Mu, B., Wang, J., Wang, F., Wang, J., Zhao, Y., Chen, W., Rossi, J. J., Weiss, L. M., & Wu, H. (2015). Piwi-interacting RNAs (piRNAs) are dysregulated in renal cell carcinoma and associated with tumor metastasis and cancer-specific survival. Molecular Medicine, 21, 381–388. https://doi.org/10.2119/molmed.2014.00203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Busch, J., Ralla, B., Jung, M., Wotschofsky, Z., Trujillo-Arribas, E., Schwabe, P., Kilic, E., Fendler, A., & Jung, K. (2015). Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. Journal of Experimental & Clinical Cancer Research, 34, 61–11. https://doi.org/10.1186/s13046-015-0180-3.

    Article  CAS  Google Scholar 

  44. Zhao, C., Tolkach, Y., Schmidt, D., Toma, M., Muders, M. H., Kristiansen, G., Müller, S. C., & Ellinger, J. (2019). Mitochondrial PIWI-interacting RNAs are novel biomarkers for clear cell renal cell carcinoma. World Journal of Urology, 37(8), 1639–1647. https://doi.org/10.1007/s00345-018-2575-1.

    Article  CAS  PubMed  Google Scholar 

  45. Iliev, R., Stanik, M., Fedorko, M., Poprach, A., Vychytilova-Faltejskova, P., Slaba, K., Svoboda, M., Fabian, P., Pacik, D., Dolezel, J., & Slaby, O. (2016). Decreased expression levels of PIWIL1, PIWIL2, and PIWIL4 are associated with worse survival in renal cell carcinoma patients. Onco Targets Ther, 9, 217–222. https://doi.org/10.2147/OTT.S91295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iliev, R., Fedorko, M., Machackova, T., Mlcochova, H., Svoboda, M., Pacik, D., et al. (2016). Expression levels of PIWI-interacting RNA, piR-823, are deregulated in tumor tissue, blood serum and urine of patients with renal cell carcinoma. Anticancer Res, 36(12), 6419–6423. https://doi.org/10.21873/anticanres.11239.

    Article  CAS  PubMed  Google Scholar 

  47. Stohr, C. G., Steffens, S., Polifka, I., Jung, R., Kahlmeyer, A., Ivanyi, P., et al. (2019). Piwi-like 1 protein expression is a prognostic factor for renal cell carcinoma patients. Scientific Reports, 9(1), 1741. https://doi.org/10.1038/s41598-018-38254-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mai, D., Ding, P., Tan, L., Zhang, J., Pan, Z., Bai, R., Li, C., Li, M., Zhou, Y., Tan, W., Zhou, Z., Li, Y., Zhou, A., Ye, Y., Pan, L., Zheng, Y., Su, J., Zuo, Z., Liu, Z., Zhao, Q., Li, X., Huang, X., Li, W., Wu, S., Jia, W., Zou, S., Wu, C., Xu, R. H., Zheng, J., & Lin, D. (2018). PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics, 8(19), 5213–5230. https://doi.org/10.7150/thno.28001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yin, J., Jiang, X. Y., Qi, W., Ji, C. G., Xie, X. L., Zhang, D. X., Cui, Z. J., Wang, C. K., Bai, Y., Wang, J., & Jiang, H. Q. (2017). piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF1. Cancer Science, 108(9), 1746–1756. https://doi.org/10.1111/cas.13300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yin, J., Qi, W., Ji, C. G., Zhang, D. X., Xie, X. L., Ding, Q., Jiang, X. Y., Han, J., & Jiang, H. Q. (2019). Small RNA sequencing revealed aberrant piRNA expression profiles in colorectal cancer. Oncology Reports, 42(1), 263–272. https://doi.org/10.3892/or.2019.7158.

    Article  CAS  PubMed  Google Scholar 

  51. Weng, W., Liu, N., Toiyama, Y., Kusunoki, M., Nagasaka, T., Fujiwara, T., Wei, Q., Qin, H., Lin, H., Ma, Y., & Goel, A. (2018). Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer. Molecular Cancer, 17(1), 16. https://doi.org/10.1186/s12943-018-0767-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun, R., Gao, C. L., Li, D. H., Li, B. J., & Ding, Y. H. (2017). Expression status of PIWIL1 as a prognostic marker of colorectal cancer. Disease Markers, 2017, 1204937. https://doi.org/10.1155/2017/1204937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vychytilova-Faltejskova, P., Stitkovcova, K., Radova, L., Sachlova, M., Kosarova, Z., Slaba, K., et al. (2018). Circulating PIWI-interacting RNAs piR-5937 and piR-28876 are promising diagnostic biomarkers of colon cancer. Cancer Epidemiology, Biomarkers & Prevention, 27(9), 1019–1028. https://doi.org/10.1158/1055-9965.EPI-18-0318.

    Article  CAS  Google Scholar 

  54. Tian, T., Li, X., & Zhang, J. (2019). mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. International Journal of Molecular Sciences, 20(3). https://doi.org/10.3390/ijms20030755.

  55. Peng, L., Song, L., Liu, C., Lv, X., Li, X., Jie, J., Zhao, D., & Li, D. (2016). piR-55490 inhibits the growth of lung carcinoma by suppressing mTOR signaling. Tumour Biology, 37(2), 2749–2756. https://doi.org/10.1007/s13277-015-4056-0.

    Article  CAS  PubMed  Google Scholar 

  56. Yao, J., Wang, Y. W., Fang, B. B., Zhang, S. J., & Cheng, B. L. (2016). piR-651 and its function in 95-D lung cancer cells. Biomed Rep, 4(5), 546–550. https://doi.org/10.3892/br.2016.628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, S. J., Yao, J., Shen, B. Z., Li, G. B., Kong, S. S., Bi, D. D., Pan, S. H., & Cheng, B. L. (2018). Role of piwi-interacting RNA-651 in the carcinogenesis of non-small cell lung cancer. Oncology Letters, 15(1), 940–946. https://doi.org/10.3892/ol.2017.7406.

    Article  CAS  PubMed  Google Scholar 

  58. Li, D., Luo, Y., Gao, Y., Yang, Y., Wang, Y., Xu, Y., Tan, S., Zhang, Y., Duan, J., & Yang, Y. (2016). piR-651 promotes tumor formation in non-small cell lung carcinoma through the upregulation of cyclin D1 and CDK4. International Journal of Molecular Medicine, 38(3), 927–936. https://doi.org/10.3892/ijmm.2016.2671.

    Article  CAS  PubMed  Google Scholar 

  59. Reeves, M. E., Firek, M., Jliedi, A., & Amaar, Y. G. (2017). Identification and characterization of RASSF1C piRNA target genes in lung cancer cells. Oncotarget, 8(21), 34268–34282. https://doi.org/10.18632/oncotarget.15965.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Reeves, M. E., Baldwin, M. L., Aragon, R., Baldwin, S., Chen, S. T., Li, X., Mohan, S., & Amaar, Y. G. (2012). RASSF1C modulates the expression of a stem cell renewal gene, PIWIL1. BMC Research Notes, 5, 239. https://doi.org/10.1186/1756-0500-5-239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reeves, M. E., Firek, M., Chen, S. T., & Amaar, Y. G. (2014). Evidence that RASSF1C stimulation of lung cancer cell proliferation depends on IGFBP-5 and PIWIL1 expression levels. PLoS One, 9(7), e101679. https://doi.org/10.1371/journal.pone.0101679.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xie, K., Zhang, K., Kong, J., Wang, C., Gu, Y., Liang, C., Jiang, T., Qin, N., Liu, J., Guo, X., Huo, R., Liu, M., Ma, H., Dai, J., & Hu, Z. (2018). Cancer-testis gene PIWIL1 promotes cell proliferation, migration, and invasion in lung adenocarcinoma. Cancer Medicine, 7(1), 157–166. https://doi.org/10.1002/cam4.1248.

    Article  CAS  PubMed  Google Scholar 

Download references

Abbreviations

ccRCC, clear cell renal cell carcinoma; CRC, colorectal cancer; ncRNA, non-coding RNA; NSCLC, non-small cell lung cancer; PIC, pre-initiation complex; PICS, piRNA biogenesis and chromosome segregation; piRNA, PIWI-interacting RNA; piRISC, piRNA silencing complex; pre-piRNA, piRNA precursor; RCC, renal cell carcinoma; TEs, transposon elements; Zuc, Zucchini; HSF-1, heat shock transcription factor-1; MTOR, mammalian or mechanical target of rapamycin

Funding

This work was supported partly by National Natural Science Foundation of China (81541153); Guangdong Provincial Science and Technology Department (2016A050503046, 2015A050502048 and 2016B030309002); The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources (GDMUK201808); Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang (ZJW-2019-07); Zhanjiang Science and technology Plan (2017A06012); Research Project of “Excellent Innovative Talent Support Program” of Heilongjiang University of Traditional Chinese Medicine (2018RCD13); and “Group-type” Special Supporting Project for Educational Talents in Universities (4SG19057G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Zhu.

Ethics declarations

Consent for publication

All authors consent for publication.

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Li, D., Du, L. et al. piRNAs: biogenesis and their potential roles in cancer. Cancer Metastasis Rev 39, 567–575 (2020). https://doi.org/10.1007/s10555-020-09863-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09863-0

Keywords

Navigation