Skip to main content

Advertisement

Log in

From biomarkers to therapeutic targets—the promises and perils of long non-coding RNAs in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Biomarker-driven personalized cancer therapy is a field of growing interest, and several molecular tests have been developed to detect biomarkers that predict, e.g., response of cancers to particular therapies. Identification of these molecules and understanding their molecular mechanisms is important for cancer prognosis and the development of therapeutics for late stage diseases. In the past, significant efforts have been placed on the discovery of protein or DNA-based biomarkers while only recently the class of long non-coding RNA (lncRNA) has emerged as a new category of biomarker. The mammalian genome is pervasively transcribed yielding a vast amount of non-protein-coding RNAs including lncRNAs. Hence, these transcripts represent a rich source of information that has the potential to significantly contribute to precision medicine in the future. Importantly, many lncRNAs are differentially expressed in carcinomas and they are emerging as potent regulators of tumor progression and metastasis. Here, we will highlight prime examples of lncRNAs that serve as marker for cancer progression or therapy response and which might represent promising therapeutic targets. Furthermore, we will introduce lncRNA targeting tools and strategies, and we will discuss potential pitfalls in translating these into clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bang, Y. J., Van Cutsem, E., Feyereislova, A., Chung, H. C., Shen, L., Sawaki, A., et al. (2010). Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet, 376(9742), 687–697. https://doi.org/10.1016/S0140-6736(10)61121-X.

    Article  CAS  PubMed  Google Scholar 

  2. Vogel, C. L., Cobleigh, M. A., Tripathy, D., Gutheil, J. C., Harris, L. N., Fehrenbacher, L., et al. (2002). Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. Journal of Clinical Oncology, 20(3), 719–726. https://doi.org/10.1200/JCO.2002.20.3.719.

    Article  CAS  PubMed  Google Scholar 

  3. Heitzer, E., Auer, M., Gasch, C., Pichler, M., Ulz, P., Hoffmann, E. M., et al. (2013). Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Research, 73(10), 2965–2975. https://doi.org/10.1158/0008-5472.CAN-12-4140.

    Article  CAS  PubMed  Google Scholar 

  4. Heitzer, E., Ulz, P., Belic, J., Gutschi, S., Quehenberger, F., Fischereder, K., et al. (2013). Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Medicine, 5(4), 30. https://doi.org/10.1186/gm434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Durand, X., Moutereau, S., Xylinas, E., & de la Taille, A. (2011). Progensa PCA3 test for prostate cancer. Expert Review of Molecular Diagnostics, 11(2), 137–144. https://doi.org/10.1586/erm.10.122.

    Article  CAS  PubMed  Google Scholar 

  6. Prensner, J. R., Zhao, S., Erho, N., Schipper, M., Iyer, M. K., Dhanasekaran, S. M., et al. (2014). RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. The Lancet Oncology, 15(13), 1469–1480. https://doi.org/10.1016/S1470-2045(14)71113-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hombach, S., & Kretz, M. (2016). Non-coding RNAs: classification, biology and functioning. Advances in Experimental Medicine and Biology, 937, 3–17. https://doi.org/10.1007/978-3-319-42059-2_1.

    Article  CAS  PubMed  Google Scholar 

  8. St Laurent, G., Wahlestedt, C., & Kapranov, P. (2015). The landscape of long noncoding RNA classification. Trends in Genetics, 31(5), 239–251. https://doi.org/10.1016/j.tig.2015.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deveson, I. W., Hardwick, S. A., Mercer, T. R., & Mattick, J. S. (2017). The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome. Trends in Genetics, 33(7), 464–478. https://doi.org/10.1016/j.tig.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  10. Gong, J., Liu, C., Liu, W., Xiang, Y., Diao, L., Guo, A. Y., et al. (2017). LNCediting: a database for functional effects of RNA editing in lncRNAs. Nucleic Acids Research, 45(D1), D79–D84. https://doi.org/10.1093/nar/gkw835.

    Article  CAS  PubMed  Google Scholar 

  11. Mele, M., Mattioli, K., Mallard, W., Shechner, D. M., Gerhardinger, C., & Rinn, J. L. (2017). Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Research, 27(1), 27–37. https://doi.org/10.1101/gr.214205.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gutschner, T., & Diederichs, S. (2012). The hallmarks of cancer: a long non-coding RNA point of view. RNA Biology, 9(6), 703–719. https://doi.org/10.4161/rna.20481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ling, H., Vincent, K., Pichler, M., Fodde, R., Berindan-Neagoe, I., Slack, F. J., et al. (2015). Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene, 34(39), 5003–5011. https://doi.org/10.1038/onc.2014.456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Necsulea, A., & Kaessmann, H. (2014). Evolutionary dynamics of coding and non-coding transcriptomes. Nature Reviews. Genetics, 15(11), 734–748. https://doi.org/10.1038/nrg3802.

    Article  CAS  PubMed  Google Scholar 

  15. Mattick, J. S., & Rinn, J. L. (2015). Discovery and annotation of long noncoding RNAs. Nature Structural & Molecular Biology, 22(1), 5–7. https://doi.org/10.1038/nsmb.2942.

    Article  CAS  Google Scholar 

  16. Iyer, M. K., Niknafs, Y. S., Malik, R., Singhal, U., Sahu, A., Hosono, Y., et al. (2015). The landscape of long noncoding RNAs in the human transcriptome. Nature Genetics, 47(3), 199–208. https://doi.org/10.1038/ng.3192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cabili, M. N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., et al. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 25(18), 1915–1927. https://doi.org/10.1101/gad.17446611.

    Article  CAS  Google Scholar 

  18. Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N., et al. (2005). The transcriptional landscape of the mammalian genome. Science, 309(5740), 1559–1563. https://doi.org/10.1126/science.1112014.

    Article  CAS  PubMed  Google Scholar 

  19. Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research, 22(9), 1775–1789. https://doi.org/10.1101/gr.132159.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., et al. (2012). Landscape of transcription in human cells. Nature, 489(7414), 101–108. https://doi.org/10.1038/nature11233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clarke, R. A., Zhao, Z., Guo, A. Y., Roper, K., Teng, L., Fang, Z. M., et al. (2009). New genomic structure for prostate cancer specific gene PCA3 within BMCC1: implications for prostate cancer detection and progression. PLoS One, 4(3), e4995. https://doi.org/10.1371/journal.pone.0004995.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tatsumi, Y., Takano, R., Islam, M. S., Yokochi, T., Itami, M., Nakamura, Y., et al. (2015). BMCC1, which is an interacting partner of BCL2, attenuates AKT activity, accompanied by apoptosis. Cell Death & Disease, 6, e1607. https://doi.org/10.1038/cddis.2014.568.

    Article  CAS  Google Scholar 

  23. Salameh, A., Lee, A. K., Cardo-Vila, M., Nunes, D. N., Efstathiou, E., Staquicini, F. I., et al. (2015). PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proceedings of the National Academy of Sciences of the United States of America, 112(27), 8403–8408. https://doi.org/10.1073/pnas.1507882112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bussemakers, M. J., van Bokhoven, A., Verhaegh, G. W., Smit, F. P., Karthaus, H. F., Schalken, J. A., et al. (1999). DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Research, 59(23), 5975–5979.

    CAS  PubMed  Google Scholar 

  25. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095.

    Article  PubMed  Google Scholar 

  26. Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal, 6(269), pl1. https://doi.org/10.1126/scisignal.2004088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Liu, Y., Zong, Z. H., Guan, X., Wang, L. L., & Zhao, Y. (2017). The role of long non-coding RNA PCA3 in epithelial ovarian carcinoma tumorigenesis and progression. Gene, 633, 42–47. https://doi.org/10.1016/j.gene.2017.08.027.

    Article  CAS  PubMed  Google Scholar 

  28. Haese, A., de la Taille, A., van Poppel, H., Marberger, M., Stenzl, A., Mulders, P. F., et al. (2008). Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. European Urology, 54(5), 1081–1088. https://doi.org/10.1016/j.eururo.2008.06.071.

    Article  PubMed  Google Scholar 

  29. Marks, L. S., Fradet, Y., Deras, I. L., Blase, A., Mathis, J., Aubin, S. M., et al. (2007). PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology, 69(3), 532–535. https://doi.org/10.1016/j.urology.2006.12.014.

    Article  PubMed  Google Scholar 

  30. Wei, J. T., Feng, Z., Partin, A. W., Brown, E., Thompson, I., Sokoll, L., et al. (2014). Can urinary PCA3 supplement PSA in the early detection of prostate cancer? Journal of Clinical Oncology, 32(36), 4066–4072. https://doi.org/10.1200/JCO.2013.52.8505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hessels, D., van Gils, M. P., van Hooij, O., Jannink, S. A., Witjes, J. A., Verhaegh, G. W., et al. (2010). Predictive value of PCA3 in urinary sediments in determining clinico-pathological characteristics of prostate cancer. Prostate, 70(1), 10–16. https://doi.org/10.1002/pros.21032.

    Article  CAS  PubMed  Google Scholar 

  32. Liss, M. A., Santos, R., Osann, K., Lau, A., Ahlering, T. E., & Ornstein, D. K. (2011). PCA3 molecular urine assay for prostate cancer: association with pathologic features and impact of collection protocols. World Journal of Urology, 29(5), 683–688. https://doi.org/10.1007/s00345-010-0623-6.

    Article  CAS  PubMed  Google Scholar 

  33. Seisen, T., Roupret, M., Brault, D., Leon, P., Cancel-Tassin, G., Comperat, E., et al. (2015). Accuracy of the prostate health index versus the urinary prostate cancer antigen 3 score to predict overall and significant prostate cancer at initial biopsy. Prostate, 75(1), 103–111. https://doi.org/10.1002/pros.22898.

    Article  PubMed  Google Scholar 

  34. Tosoian, J. J., Loeb, S., Kettermann, A., Landis, P., Elliot, D. J., Epstein, J. I., et al. (2010). Accuracy of PCA3 measurement in predicting short-term biopsy progression in an active surveillance program. The Journal of Urology, 183(2), 534–538. https://doi.org/10.1016/j.juro.2009.10.003.

    Article  CAS  PubMed  Google Scholar 

  35. Elshafei, A., Chevli, K. K., Moussa, A. S., Kara, O., Chueh, S. C., Walter, P., et al. (2015). PCA3-based nomogram for predicting prostate cancer and high grade cancer on initial transrectal guided biopsy. Prostate, 75(16), 1951–1957. https://doi.org/10.1002/pros.23096.

    Article  CAS  PubMed  Google Scholar 

  36. Hansen, J., Auprich, M., Ahyai, S. A., de la Taille, A., van Poppel, H., Marberger, M., et al. (2013). Initial prostate biopsy: development and internal validation of a biopsy-specific nomogram based on the prostate cancer antigen 3 assay. European Urology, 63(2), 201–209. https://doi.org/10.1016/j.eururo.2012.07.030.

    Article  PubMed  Google Scholar 

  37. Tomlins, S. A., Day, J. R., Lonigro, R. J., Hovelson, D. H., Siddiqui, J., Kunju, L. P., et al. (2016). Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. European Urology, 70(1), 45–53. https://doi.org/10.1016/j.eururo.2015.04.039.

    Article  CAS  PubMed  Google Scholar 

  38. Vlaeminck-Guillem, V., Ruffion, A., Andre, J., Devonec, M., & Paparel, P. (2010). Urinary prostate cancer 3 test: toward the age of reason? Urology, 75(2), 447–453. https://doi.org/10.1016/j.urology.2009.03.046.

    Article  PubMed  Google Scholar 

  39. Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323. https://doi.org/10.1016/j.cell.2007.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, K., Jutooru, I., Chadalapaka, G., Johnson, G., Frank, J., Burghardt, R., et al. (2013). HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene, 32(13), 1616–1625. https://doi.org/10.1038/onc.2012.193.

    Article  CAS  PubMed  Google Scholar 

  41. Olmeda, D., Moreno-Bueno, G., Flores, J. M., Fabra, A., Portillo, F., & Cano, A. (2007). SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Research, 67(24), 11721–11731. https://doi.org/10.1158/0008-5472.CAN-07-2318.

    Article  CAS  PubMed  Google Scholar 

  42. Srinivasan, D., & Plattner, R. (2006). Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Research, 66(11), 5648–5655. https://doi.org/10.1158/0008-5472.CAN-06-0734.

    Article  CAS  PubMed  Google Scholar 

  43. Garg, M., Kanojia, D., Okamoto, R., Jain, S., Madan, V., Chien, W., et al. (2014). Laminin-5gamma-2 (LAMC2) is highly expressed in anaplastic thyroid carcinoma and is associated with tumor progression, migration, and invasion by modulating signaling of EGFR. The Journal of Clinical Endocrinology and Metabolism, 99(1), E62–E72. https://doi.org/10.1210/jc.2013-2994.

    Article  PubMed  Google Scholar 

  44. Marinkovich, M. P. (2007). Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nature Reviews. Cancer, 7(5), 370–380. https://doi.org/10.1038/nrc2089.

    Article  CAS  PubMed  Google Scholar 

  45. Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071–1076. https://doi.org/10.1038/nature08975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cai, H., An, Y., Chen, X., Sun, D., Chen, T., Peng, Y., et al. (2016). Epigenetic inhibition of miR-663b by long non-coding RNA HOTAIR promotes pancreatic cancer cell proliferation via up-regulation of insulin-like growth factor 2. Oncotarget, 7(52), 86857–86870. https://doi.org/10.18632/oncotarget.13490.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cai, H., Yao, J., An, Y., Chen, X., Chen, W., Wu, D., et al. (2017). LncRNA HOTAIR acts a competing endogenous RNA to control the expression of notch3 via sponging miR-613 in pancreatic cancer. Oncotarget, 8(20), 32905–32917. https://doi.org/10.18632/oncotarget.16462.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cantile, M., Scognamiglio, G., Marra, L., Aquino, G., Botti, C., Falcone, M. R., et al. (2017). HOTAIR role in melanoma progression and its identification in the blood of patients with advanced disease. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.25789.

  49. Stratford, J. K., Bentrem, D. J., Anderson, J. M., Fan, C., Volmar, K. A., Marron, J. S., et al. (2010). A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Medicine, 7(7), e1000307. https://doi.org/10.1371/journal.pmed.1000307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Badea, L., Herlea, V., Dima, S. O., Dumitrascu, T., & Popescu, I. (2008). Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepato-Gastroenterology, 55(88), 2016–2027.

    CAS  PubMed  Google Scholar 

  51. Xie, Z., Chen, X., Li, J., Guo, Y., Li, H., Pan, X., et al. (2016). Salivary HOTAIR and PVT1 as novel biomarkers for early pancreatic cancer. Oncotarget, 7(18), 25408–25419. https://doi.org/10.18632/oncotarget.8323.

    PubMed  PubMed Central  Google Scholar 

  52. Gao, J. Z., Li, J., Du, J. L., & Li, X. L. (2016). Long non-coding RNA HOTAIR is a marker for hepatocellular carcinoma progression and tumor recurrence. Oncology Letters, 11(3), 1791–1798. https://doi.org/10.3892/ol.2016.4130.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ishibashi, M., Kogo, R., Shibata, K., Sawada, G., Takahashi, Y., Kurashige, J., et al. (2013). Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma. Oncology Reports, 29(3), 946–950. https://doi.org/10.3892/or.2012.2219.

    Article  CAS  PubMed  Google Scholar 

  54. Yang, Z., Zhou, L., Wu, L. M., Lai, M. C., Xie, H. Y., Zhang, F., et al. (2011). Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Annals of Surgical Oncology, 18(5), 1243–1250. https://doi.org/10.1245/s10434-011-1581-y.

    Article  PubMed  Google Scholar 

  55. Qiu, J. J., Lin, Y. Y., Ye, L. C., Ding, J. X., Feng, W. W., Jin, H. Y., et al. (2014). Overexpression of long non-coding RNA HOTAIR predicts poor patient prognosis and promotes tumor metastasis in epithelial ovarian cancer. Gynecologic Oncology, 134(1), 121–128. https://doi.org/10.1016/j.ygyno.2014.03.556.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, Z., Cheng, J., Wu, Y., Qiu, J., Sun, Y., & Tong, X. (2016). LncRNA HOTAIR controls the expression of Rab22a by sponging miR-373 in ovarian cancer. Molecular Medicine Reports, 14(3), 2465–2472. https://doi.org/10.3892/mmr.2016.5572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sorensen, K. P., Thomassen, M., Tan, Q., Bak, M., Cold, S., Burton, M., et al. (2013). Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Research and Treatment, 142(3), 529–536. https://doi.org/10.1007/s10549-013-2776-7.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang, L., Song, X., Wang, X., Xie, Y., Wang, Z., Xu, Y., et al. (2015). Circulating DNA of HOTAIR in serum is a novel biomarker for breast cancer. Breast Cancer Research and Treatment, 152(1), 199–208. https://doi.org/10.1007/s10549-015-3431-2.

    Article  CAS  PubMed  Google Scholar 

  59. Kogo, R., Shimamura, T., Mimori, K., Kawahara, K., Imoto, S., Sudo, T., et al. (2011). Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Research, 71(20), 6320–6326. https://doi.org/10.1158/0008-5472.CAN-11-1021.

    Article  CAS  PubMed  Google Scholar 

  60. Svoboda, M., Slyskova, J., Schneiderova, M., Makovicky, P., Bielik, L., Levy, M., et al. (2014). HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients. Carcinogenesis, 35(7), 1510–1515. https://doi.org/10.1093/carcin/bgu055.

    Article  CAS  PubMed  Google Scholar 

  61. Zhao, W., Song, M., Zhang, J., Kuerban, M., & Wang, H. (2015). Combined identification of long non-coding RNA CCAT1 and HOTAIR in serum as an effective screening for colorectal carcinoma. International Journal of Clinical and Experimental Pathology, 8(11), 14131–14140.

    PubMed  PubMed Central  Google Scholar 

  62. Wu, Z. H., Wang, X. L., Tang, H. M., Jiang, T., Chen, J., Lu, S., et al. (2014). Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer. Oncology Reports, 32(1), 395–402. https://doi.org/10.3892/or.2014.3186.

    Article  CAS  PubMed  Google Scholar 

  63. Li, D., Feng, J., Wu, T., Wang, Y., Sun, Y., Ren, J., et al. (2013). Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. The American Journal of Pathology, 182(1), 64–70. https://doi.org/10.1016/j.ajpath.2012.08.042.

    Article  CAS  PubMed  Google Scholar 

  64. Nie, Y., Liu, X., Qu, S., Song, E., Zou, H., & Gong, C. (2013). Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Science, 104(4), 458–464. https://doi.org/10.1111/cas.12092.

    Article  CAS  PubMed  Google Scholar 

  65. Endo, H., Shiroki, T., Nakagawa, T., Yokoyama, M., Tamai, K., Yamanami, H., et al. (2013). Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. PLoS One, 8(10), e77070. https://doi.org/10.1371/journal.pone.0077070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, N. K., Lee, J. H., Park, C. H., Yu, D., Lee, Y. C., Cheong, J. H., et al. (2014). Long non-coding RNA HOTAIR promotes carcinogenesis and invasion of gastric adenocarcinoma. Biochemical and Biophysical Research Communications, 451(2), 171–178. https://doi.org/10.1016/j.bbrc.2014.07.067.

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, W., Dong, S., Duan, B., Chen, P., Shi, L., Gao, H., et al. (2015). HOTAIR is a predictive and prognostic biomarker for patients with advanced gastric adenocarcinoma receiving fluorouracil and platinum combination chemotherapy. American Journal of Translational Research, 7(7), 1295–1302.

    PubMed  PubMed Central  Google Scholar 

  68. Chen, F. J., Sun, M., Li, S. Q., Wu, Q. Q., Ji, L., Liu, Z. L., et al. (2013). Upregulation of the long non-coding RNA HOTAIR promotes esophageal squamous cell carcinoma metastasis and poor prognosis. Molecular Carcinogenesis, 52(11), 908–915. https://doi.org/10.1002/mc.21944.

    Article  CAS  PubMed  Google Scholar 

  69. Ge, X. S., Ma, H. J., Zheng, X. H., Ruan, H. L., Liao, X. Y., Xue, W. Q., et al. (2013). HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Science, 104(12), 1675–1682. https://doi.org/10.1111/cas.12296.

    Article  CAS  PubMed  Google Scholar 

  70. Li, X., Wu, Z., Mei, Q., Li, X., Guo, M., Fu, X., et al. (2013). Long non-coding RNA HOTAIR, a driver of malignancy, predicts negative prognosis and exhibits oncogenic activity in oesophageal squamous cell carcinoma. British Journal of Cancer, 109(8), 2266–2278. https://doi.org/10.1038/bjc.2013.548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lv, X. B., Lian, G. Y., Wang, H. R., Song, E., Yao, H., & Wang, M. H. (2013). Long noncoding RNA HOTAIR is a prognostic marker for esophageal squamous cell carcinoma progression and survival. PLoS One, 8(5), e63516. https://doi.org/10.1371/journal.pone.0063516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, W., He, X., Zheng, Z., Ma, X., Hu, X., Wu, D., et al. (2017). Serum HOTAIR as a novel diagnostic biomarker for esophageal squamous cell carcinoma. Molecular Cancer, 16(1), 75. https://doi.org/10.1186/s12943-017-0643-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, X. H., Liu, Z. L., Sun, M., Liu, J., Wang, Z. X., & De, W. (2013). The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer, 13, 464. https://doi.org/10.1186/1471-2407-13-464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Nakagawa, T., Endo, H., Yokoyama, M., Abe, J., Tamai, K., Tanaka, N., et al. (2013). Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochemical and Biophysical Research Communications, 436(2), 319–324. https://doi.org/10.1016/j.bbrc.2013.05.101.

    Article  CAS  PubMed  Google Scholar 

  75. Ono, H., Motoi, N., Nagano, H., Miyauchi, E., Ushijima, M., Matsuura, M., et al. (2014). Long noncoding RNA HOTAIR is relevant to cellular proliferation, invasiveness, and clinical relapse in small-cell lung cancer. Cancer Medicine, 3(3), 632–642. https://doi.org/10.1002/cam4.220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yan, T. H., Lu, S. W., Huang, Y. Q., Que, G. B., Chen, J. H., Chen, Y. P., et al. (2014). Upregulation of the long noncoding RNA HOTAIR predicts recurrence in stage Ta/T1 bladder cancer. Tumour Biology, 35(10), 10249–10257. https://doi.org/10.1007/s13277-014-2344-8.

    Article  CAS  PubMed  Google Scholar 

  77. Shang, C., Guo, Y., Zhang, H., & Xue, Y. X. (2016). Long noncoding RNA HOTAIR is a prognostic biomarker and inhibits chemosensitivity to doxorubicin in bladder transitional cell carcinoma. Cancer Chemotherapy and Pharmacology, 77(3), 507–513. https://doi.org/10.1007/s00280-016-2964-3.

    Article  CAS  PubMed  Google Scholar 

  78. Hu, G., Dong, B., Zhang, J., Zhai, W., Xie, T., Huang, B., et al. (2017). The long noncoding RNA HOTAIR activates the Hippo pathway by directly binding to SAV1 in renal cell carcinoma. Oncotarget. https://doi.org/10.18632/oncotarget.17414.

  79. Tang, L., Zhang, W., Su, B., & Yu, B. (2013). Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. BioMed Research International, 2013, 251098. https://doi.org/10.1155/2013/251098.

    PubMed  PubMed Central  Google Scholar 

  80. Dou, J., Ni, Y., He, X., Wu, D., Li, M., Wu, S., et al. (2016). Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells. American Journal of Translational Research, 8(1), 98–108.

    PubMed  PubMed Central  Google Scholar 

  81. Gutschner, T., Hammerle, M., & Diederichs, S. (2013). MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl), 91(7), 791–801. https://doi.org/10.1007/s00109-013-1028-y.

    Article  CAS  Google Scholar 

  82. Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., Schneider, P. M., et al. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22(39), 8031–8041. https://doi.org/10.1038/sj.onc.1206928.

    Article  PubMed  CAS  Google Scholar 

  83. Schmidt, L. H., Spieker, T., Koschmieder, S., Schaffers, S., Humberg, J., Jungen, D., et al. (2011). The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. Journal of Thoracic Oncology, 6(12), 1984–1992. https://doi.org/10.1097/JTO.0b013e3182307eac.

    Article  PubMed  Google Scholar 

  84. Shen, L., Chen, L., Wang, Y., Jiang, X., Xia, H., & Zhuang, Z. (2015). Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. Journal of Neuro-Oncology, 121(1), 101–108. https://doi.org/10.1007/s11060-014-1613-0.

    Article  CAS  PubMed  Google Scholar 

  85. Liu, M., Sun, W., Liu, Y., & Dong, X. (2016). The role of lncRNA MALAT1 in bone metastasis in patients with non-small cell lung cancer. Oncology Reports, 36(3), 1679–1685. https://doi.org/10.3892/or.2016.4909.

    Article  CAS  PubMed  Google Scholar 

  86. Zheng, H. T., Shi, D. B., Wang, Y. W., Li, X. X., Xu, Y., Tripathi, P., et al. (2014). High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. International Journal of Clinical and Experimental Pathology, 7(6), 3174–3181.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang, M. H., Hu, Z. Y., Xu, C., Xie, L. Y., Wang, X. Y., Chen, S. Y., et al. (2015). MALAT1 promotes colorectal cancer cell proliferation/migration/invasion via PRKA kinase anchor protein 9. Biochimica et Biophysica Acta, 1852(1), 166–174. https://doi.org/10.1016/j.bbadis.2014.11.013.

    Article  CAS  PubMed  Google Scholar 

  88. Li, P., Zhang, X., Wang, H., Wang, L., Liu, T., Du, L., et al. (2017). MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Molecular Cancer Therapeutics, 16(4), 739–751. https://doi.org/10.1158/1535-7163.MCT-16-0591.

    Article  CAS  PubMed  Google Scholar 

  89. Qiu, G., Zhang, X. B., Zhang, S. Q., Liu, P. L., Wu, W., Zhang, J. Y., et al. (2016). Dysregulation of MALAT1 and miR-619-5p as a prognostic indicator in advanced colorectal carcinoma. Oncology Letters, 12(6), 5036–5042. https://doi.org/10.3892/ol.2016.5312.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Xu, S., Sui, S., Zhang, J., Bai, N., Shi, Q., Zhang, G., et al. (2015). Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. International Journal of Clinical and Experimental Pathology, 8(5), 4881–4891.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang, N. S., Chi, Y. Y., Xue, J. Y., Liu, M. Y., Huang, S., Mo, M., et al. (2016). Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) interacts with estrogen receptor and predicted poor survival in breast cancer. Oncotarget, 7(25), 37957–37965. https://doi.org/10.18632/oncotarget.9364.

    PubMed  PubMed Central  Google Scholar 

  92. Jin, C., Yan, B., Lu, Q., Lin, Y., & Ma, L. (2016). Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumour Biology, 37(6), 7383–7394. https://doi.org/10.1007/s13277-015-4605-6.

    Article  CAS  PubMed  Google Scholar 

  93. Jadaliha, M., Zong, X., Malakar, P., Ray, T., Singh, D. K., Freier, S. M., et al. (2016). Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget, 7(26), 40418–40436. https://doi.org/10.18632/oncotarget.9622.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Miao, Y., Fan, R., Chen, L., & Qian, H. (2016). Clinical significance of long non-coding RNA MALAT1 expression in tissue and serum of breast cancer. Annals of Clinical and Laboratory Science, 46(4), 418–424.

    PubMed  Google Scholar 

  95. Chen, Q., Su, Y., He, X., Zhao, W., Wu, C., Zhang, W., et al. (2016). Plasma long non-coding RNA MALAT1 is associated with distant metastasis in patients with epithelial ovarian cancer. Oncology Letters, 12(2), 1361–1366. https://doi.org/10.3892/ol.2016.4800.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Huang, C., Yu, Z., Yang, H., & Lin, Y. (2016). Increased MALAT1 expression predicts poor prognosis in esophageal cancer patients. Biomedicine & Pharmacotherapy, 83, 8–13. https://doi.org/10.1016/j.biopha.2016.05.044.

    Article  CAS  Google Scholar 

  97. Wang, W., Zhu, Y., Li, S., Chen, X., Jiang, G., Shen, Z., et al. (2016). Long noncoding RNA MALAT1 promotes malignant development of esophageal squamous cell carcinoma by targeting beta-catenin via Ezh2. Oncotarget, 7(18), 25668–25682. https://doi.org/10.18632/oncotarget.8257.

    PubMed  PubMed Central  Google Scholar 

  98. Yao, W., Bai, Y., Li, Y., Guo, L., Zeng, P., Wang, Y., et al. (2016). Upregulation of MALAT-1 and its association with survival rate and the effect on cell cycle and migration in patients with esophageal squamous cell carcinoma. Tumour Biology, 37(4), 4305–4312. https://doi.org/10.1007/s13277-015-4223-3.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, H. M., Yang, F. Q., Chen, S. J., Che, J., & Zheng, J. H. (2015). Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biology, 36(4), 2947–2955. https://doi.org/10.1007/s13277-014-2925-6.

    Article  CAS  PubMed  Google Scholar 

  100. Hirata, H., Hinoda, Y., Shahryari, V., Deng, G., Nakajima, K., Tabatabai, Z. L., et al. (2015). Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Research, 75(7), 1322–1331. https://doi.org/10.1158/0008-5472.CAN-14-2931.

    Article  CAS  PubMed  Google Scholar 

  101. Liu, J. H., Chen, G., Dang, Y. W., Li, C. J., & Luo, D. Z. (2014). Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pacific Journal of Cancer Prevention, 15(7), 2971–2977.

    Article  PubMed  Google Scholar 

  102. Pang, E. J., Yang, R., Fu, X. B., & Liu, Y. F. (2015). Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biology, 36(4), 2403–2407. https://doi.org/10.1007/s13277-014-2850-8.

    Article  CAS  PubMed  Google Scholar 

  103. Zhou, X., Liu, S., Cai, G., Kong, L., Zhang, T., Ren, Y., et al. (2015). Long non coding RNA MALAT1 promotes tumor growth and metastasis by inducing epithelial-mesenchymal transition in oral squamous cell carcinoma. Scientific Reports, 5, 15972. https://doi.org/10.1038/srep15972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fan, Y., Shen, B., Tan, M., Mu, X., Qin, Y., Zhang, F., et al. (2014). TGF-beta-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clinical Cancer Research, 20(6), 1531–1541. https://doi.org/10.1158/1078-0432.CCR-13-1455.

    Article  CAS  PubMed  Google Scholar 

  105. Hu, L., Wu, Y., Tan, D., Meng, H., Wang, K., Bai, Y., et al. (2015). Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research, 34, 7. https://doi.org/10.1186/s13046-015-0123-z.

    Article  CAS  Google Scholar 

  106. Yu, W., Gius, D., Onyango, P., Muldoon-Jacobs, K., Karp, J., Feinberg, A. P., et al. (2008). Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature, 451(7175), 202–206. https://doi.org/10.1038/nature06468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Burd, C. E., Jeck, W. R., Liu, Y., Sanoff, H. K., Wang, Z., & Sharpless, N. E. (2010). Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genetics, 6(12), e1001233. https://doi.org/10.1371/journal.pgen.1001233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Folkersen, L., Kyriakou, T., Goel, A., Peden, J., Malarstig, A., Paulsson-Berne, G., et al. (2009). Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS One, 4(11), e7677. https://doi.org/10.1371/journal.pone.0007677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Pasmant, E., Laurendeau, I., Heron, D., Vidaud, M., Vidaud, D., & Bieche, I. (2007). Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Research, 67(8), 3963–3969. https://doi.org/10.1158/0008-5472.CAN-06-2004.

    Article  CAS  PubMed  Google Scholar 

  110. Sarkar, D., Oghabian, A., Bodiyabadu, P. K., Joseph, W. R., Leung, E. Y., Finlay, G. J., et al. (2017). Multiple isoforms of ANRIL in melanoma cells: structural complexity suggests variations in processing. International Journal of Molecular Sciences, 18(7). https://doi.org/10.3390/ijms18071378.

  111. Kotake, Y., Nakagawa, T., Kitagawa, K., Suzuki, S., Liu, N., Kitagawa, M., et al. (2011). Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene, 30(16), 1956–1962. https://doi.org/10.1038/onc.2010.568.

    Article  CAS  PubMed  Google Scholar 

  112. Yap, K. L., Li, S., Munoz-Cabello, A. M., Raguz, S., Zeng, L., Mujtaba, S., et al. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell, 38(5), 662–674. https://doi.org/10.1016/j.molcel.2010.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Holdt, L. M., Hoffmann, S., Sass, K., Langenberger, D., Scholz, M., Krohn, K., et al. (2013). Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genetics, 9(7), e1003588. https://doi.org/10.1371/journal.pgen.1003588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pasmant, E., Sabbagh, A., Vidaud, M., & Bieche, I. (2011). ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. The FASEB Journal, 25(2), 444–448. https://doi.org/10.1096/fj.10-172452.

    Article  CAS  PubMed  Google Scholar 

  115. Sherborne, A. L., Hosking, F. J., Prasad, R. B., Kumar, R., Koehler, R., Vijayakrishnan, J., et al. (2010). Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nature Genetics, 42(6), 492–494. https://doi.org/10.1038/ng.585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cunnington, M. S., Santibanez Koref, M., Mayosi, B. M., Burn, J., & Keavney, B. (2010). Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genetics, 6(4), e1000899. https://doi.org/10.1371/journal.pgen.1000899.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Hua, L., Wang, C. Y., Yao, K. H., Chen, J. T., Zhang, J. J., & Ma, W. L. (2015). High expression of long non-coding RNA ANRIL is associated with poor prognosis in hepatocellular carcinoma. International Journal of Clinical and Experimental Pathology, 8(3), 3076–3082.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun, Z., Ou, C., Ren, W., Xie, X., Li, X., & Li, G. (2016). Downregulation of long non-coding RNA ANRIL suppresses lymphangiogenesis and lymphatic metastasis in colorectal cancer. Oncotarget, 7(30), 47536–47555. https://doi.org/10.18632/oncotarget.9868.

    PubMed  PubMed Central  Google Scholar 

  119. Nie, F. Q., Sun, M., Yang, J. S., Xie, M., Xu, T. P., Xia, R., et al. (2015). Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Molecular Cancer Therapeutics, 14(1), 268–277. https://doi.org/10.1158/1535-7163.MCT-14-0492.

    Article  CAS  PubMed  Google Scholar 

  120. Lin, L., Gu, Z. T., Chen, W. H., & Cao, K. J. (2015). Increased expression of the long non-coding RNA ANRIL promotes lung cancer cell metastasis and correlates with poor prognosis. Diagnostic Pathology, 10, 14. https://doi.org/10.1186/s13000-015-0247-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Zhao, J. J., Hao, S., Wang, L. L., Hu, C. Y., Zhang, S., Guo, L. J., et al. (2016). Long non-coding RNA ANRIL promotes the invasion and metastasis of thyroid cancer cells through TGF-beta/Smad signaling pathway. Oncotarget, 7(36), 57903–57918. https://doi.org/10.18632/oncotarget.11087.

    PubMed  PubMed Central  Google Scholar 

  122. Liu, B., Shen, E. D., Liao, M. M., Hu, Y. B., Wu, K., Yang, P., et al. (2016). Expression and mechanisms of long non-coding RNA genes MEG3 and ANRIL in gallbladder cancer. Tumour Biology, 37(7), 9875–9886. https://doi.org/10.1007/s13277-016-4863-y.

    Article  CAS  PubMed  Google Scholar 

  123. Iranpour, M., Soudyab, M., Geranpayeh, L., Mirfakhraie, R., Azargashb, E., Movafagh, A., et al. (2016). Expression analysis of four long noncoding RNAs in breast cancer. Tumour Biology, 37(3), 2933–2940. https://doi.org/10.1007/s13277-015-4135-2.

    Article  CAS  PubMed  Google Scholar 

  124. Qiu, J. J., Lin, Y. Y., Ding, J. X., Feng, W. W., Jin, H. Y., & Hua, K. Q. (2015). Long non-coding RNA ANRIL predicts poor prognosis and promotes invasion/metastasis in serous ovarian cancer. International Journal of Oncology, 46(6), 2497–2505. https://doi.org/10.3892/ijo.2015.2943.

    Article  CAS  PubMed  Google Scholar 

  125. Qiu, J. J., Wang, Y., Liu, Y. L., Zhang, Y., Ding, J. X., & Hua, K. Q. (2016). The long non-coding RNA ANRIL promotes proliferation and cell cycle progression and inhibits apoptosis and senescence in epithelial ovarian cancer. Oncotarget, 7(22), 32478–32492. https://doi.org/10.18632/oncotarget.8744.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zhang, D., Sun, G., Zhang, H., Tian, J., & Li, Y. (2017). Long non-coding RNA ANRIL indicates a poor prognosis of cervical cancer and promotes carcinogenesis via PI3K/Akt pathways. Biomedicine & Pharmacotherapy, 85, 511–516. https://doi.org/10.1016/j.biopha.2016.11.058.

    Article  CAS  Google Scholar 

  127. Zou, Z. W., Ma, C., Medoro, L., Chen, L., Wang, B., Gupta, R., et al. (2016). LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprograming cell glucose metabolism and inducing side-population stem-like cancer cells. Oncotarget, 7(38), 61741–61754. https://doi.org/10.18632/oncotarget.11437.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hu, X., Bao, J., Wang, Z., Zhang, Z., Gu, P., Tao, F., et al. (2016). The plasma lncRNA acting as fingerprint in non-small-cell lung cancer. Tumour Biology, 37(3), 3497–3504. https://doi.org/10.1007/s13277-015-4023-9.

    Article  CAS  PubMed  Google Scholar 

  129. Lu, Y., Zhou, X., Xu, L., Rong, C., Shen, C., & Bian, W. (2016). Long noncoding RNA ANRIL could be transactivated by c-Myc and promote tumor progression of non-small-cell lung cancer. Onco Targets Ther, 9, 3077–3084. https://doi.org/10.2147/OTT.S102658.

    PubMed  PubMed Central  Google Scholar 

  130. Smith, C. M., & Steitz, J. A. (1998). Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Molecular and Cellular Biology, 18(12), 6897–6909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mourtada-Maarabouni, M., Hasan, A. M., Farzaneh, F., & Williams, G. T. (2010). Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Molecular Pharmacology, 78(1), 19–28. https://doi.org/10.1124/mol.110.064055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pickard, M. R., & Williams, G. T. (2015). Molecular and cellular mechanisms of action of tumour suppressor GAS5 LncRNA. Genes (Basel), 6(3), 484–499. https://doi.org/10.3390/genes6030484.

    Article  CAS  Google Scholar 

  133. Tani, H., Torimura, M., & Akimitsu, N. (2013). The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS One, 8(1), e55684. https://doi.org/10.1371/journal.pone.0055684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fatscher, T., Boehm, V., & Gehring, N. H. (2015). Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cellular and Molecular Life Sciences, 72(23), 4523–4544. https://doi.org/10.1007/s00018-015-2017-9.

    Article  CAS  PubMed  Google Scholar 

  135. Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293. https://doi.org/10.1016/j.cell.2012.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kino, T., Hurt, D. E., Ichijo, T., Nader, N., & Chrousos, G. P. (2010). Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal, 3(107), ra8. https://doi.org/10.1126/scisignal.2000568.

    PubMed  PubMed Central  Google Scholar 

  137. Zhang, Z., Zhu, Z., Watabe, K., Zhang, X., Bai, C., Xu, M., et al. (2013). Negative regulation of lncRNA GAS5 by miR-21. Cell Death and Differentiation, 20(11), 1558–1568. https://doi.org/10.1038/cdd.2013.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu, Y., Zhao, J., Zhang, W., Gan, J., Hu, C., Huang, G., et al. (2015). lncRNA GAS5 enhances G1 cell cycle arrest via binding to YBX1 to regulate p21 expression in stomach cancer. Sci Rep, 5, 10159. https://doi.org/10.1038/srep10159.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Liu, Z., Wang, W., Jiang, J., Bao, E., Xu, D., Zeng, Y., et al. (2013). Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS One, 8(9), e73991. https://doi.org/10.1371/journal.pone.0073991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gao, Q., Xie, H., Zhan, H., Li, J., Liu, Y., & Huang, W. (2017). Prognostic values of long noncoding RNA GAS5 in various carcinomas: an updated systematic review and meta-analysis. Frontiers in Physiology, 8, 814. https://doi.org/10.3389/fphys.2017.00814.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Dong, S., Qu, X., Li, W., Zhong, X., Li, P., Yang, S., et al. (2015). The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. Journal of Hematology & Oncology, 8, 43. https://doi.org/10.1186/s13045-015-0140-6.

    Article  CAS  Google Scholar 

  142. Shi, X., Sun, M., Liu, H., Yao, Y., Kong, R., Chen, F., et al. (2015). A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Molecular Carcinogenesis, 54(Suppl 1), E1–E12. https://doi.org/10.1002/mc.22120.

    Article  CAS  PubMed  Google Scholar 

  143. Guo, L. J., Zhang, S., Gao, B., Jiang, Y., Zhang, X. H., Tian, W. G., et al. (2017). Low expression of long non-coding RNA GAS5 is associated with poor prognosis of patients with thyroid cancer. Experimental and Molecular Pathology, 102(3), 500–504. https://doi.org/10.1016/j.yexmp.2017.05.008.

    Article  CAS  PubMed  Google Scholar 

  144. Sun, M., Jin, F. Y., Xia, R., Kong, R., Li, J. H., Xu, T. P., et al. (2014). Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer, 14, 319. https://doi.org/10.1186/1471-2407-14-319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Yin, D., He, X., Zhang, E., Kong, R., De, W., & Zhang, Z. (2014). Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Medical Oncology, 31(11), 253. https://doi.org/10.1007/s12032-014-0253-8.

    Article  PubMed  CAS  Google Scholar 

  146. Li, Y., Li, Y., Huang, S., He, K., Zhao, M., Lin, H., et al. (2017). Long non-coding RNA growth arrest specific transcript 5 acts as a tumour suppressor in colorectal cancer by inhibiting interleukin-10 and vascular endothelial growth factor expression. Oncotarget, 8(8), 13690–13702. https://doi.org/10.18632/oncotarget.14625.

    PubMed  PubMed Central  Google Scholar 

  147. Tu, Z. Q., Li, R. J., Mei, J. Z., & Li, X. H. (2014). Down-regulation of long non-coding RNA GAS5 is associated with the prognosis of hepatocellular carcinoma. International Journal of Clinical and Experimental Pathology, 7(7), 4303–4309.

    PubMed  PubMed Central  Google Scholar 

  148. Chang, L., Li, C., Lan, T., Wu, L., Yuan, Y., Liu, Q., et al. (2016). Decreased expression of long non-coding RNA GAS5 indicates a poor prognosis and promotes cell proliferation and invasion in hepatocellular carcinoma by regulating vimentin. Molecular Medicine Reports, 13(2), 1541–1550. https://doi.org/10.3892/mmr.2015.4716.

    Article  CAS  PubMed  Google Scholar 

  149. Hu, L., Ye, H., Huang, G., Luo, F., Liu, Y., Liu, Y., et al. (2016). Long noncoding RNA GAS5 suppresses the migration and invasion of hepatocellular carcinoma cells via miR-21. Tumour Biology, 37(2), 2691–2702. https://doi.org/10.1007/s13277-015-4111-x.

    Article  CAS  PubMed  Google Scholar 

  150. Zhang, H., Guo, Y., Song, Y., & Shang, C. (2017). Long noncoding RNA GAS5 inhibits malignant proliferation and chemotherapy resistance to doxorubicin in bladder transitional cell carcinoma. Cancer Chemotherapy and Pharmacology, 79(1), 49–55. https://doi.org/10.1007/s00280-016-3194-4.

    Article  CAS  PubMed  Google Scholar 

  151. Xue, D., Zhou, C., Lu, H., Xu, R., Xu, X., & He, X. (2016). LncRNA GAS5 inhibits proliferation and progression of prostate cancer by targeting miR-103 through AKT/mTOR signaling pathway. Tumour Biology. https://doi.org/10.1007/s13277-016-5429-8.

  152. Gao, J., Liu, M., Zou, Y., Mao, M., Shen, T., Zhang, C., et al. (2015). Long non-coding RNA growth arrest-specific transcript 5 is involved in ovarian cancer cell apoptosis through the mitochondria-mediated apoptosis pathway. Oncology Reports, 34(6), 3212–3221. https://doi.org/10.3892/or.2015.4318.

    Article  CAS  PubMed  Google Scholar 

  153. Li, J., Huang, H., Li, Y., Li, L., Hou, W., & You, Z. (2016). Decreased expression of long non-coding RNA GAS5 promotes cell proliferation, migration and invasion, and indicates a poor prognosis in ovarian cancer. Oncology Reports, 36(6), 3241–3250. https://doi.org/10.3892/or.2016.5200.

    Article  CAS  PubMed  Google Scholar 

  154. Cao, S., Liu, W., Li, F., Zhao, W., & Qin, C. (2014). Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer. International Journal of Clinical and Experimental Pathology, 7(10), 6776–6783.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, W., Zhai, L., Wang, H., Liu, C., Zhang, J., Chen, W., et al. (2016). Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget, 7(19), 27778–27786. https://doi.org/10.18632/oncotarget.8413.

    PubMed  PubMed Central  Google Scholar 

  156. Mourtada-Maarabouni, M., Pickard, M. R., Hedge, V. L., Farzaneh, F., & Williams, G. T. (2009). GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 28(2), 195–208. https://doi.org/10.1038/onc.2008.373.

    Article  CAS  PubMed  Google Scholar 

  157. Han, L., Ma, P., Liu, S. M., & Zhou, X. (2016). Circulating long noncoding RNA GAS5 as a potential biomarker in breast cancer for assessing the surgical effects. Tumour Biology, 37(5), 6847–6854. https://doi.org/10.1007/s13277-015-4568-7.

    Article  CAS  PubMed  Google Scholar 

  158. Yang, Y., Shen, Z., Yan, Y., Wang, B., Zhang, J., Shen, C., et al. (2017). Long non-coding RNA GAS5 inhibits cell proliferation, induces G0/G1 arrest and apoptosis, and functions as a prognostic marker in colorectal cancer. Oncology Letters, 13(5), 3151–3158. https://doi.org/10.3892/ol.2017.5841.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kong, H., Wu, Y., Zhu, M., Zhai, C., Qian, J., Gao, X., et al. (2016). Long non-coding RNAs: novel prognostic biomarkers for liver metastases in patients with early stage colorectal cancer. Oncotarget, 7(31), 50428–50436. https://doi.org/10.18632/oncotarget.10416.

    PubMed  PubMed Central  Google Scholar 

  160. Khaitan, D., Dinger, M. E., Mazar, J., Crawford, J., Smith, M. A., Mattick, J. S., et al. (2011). The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Research, 71(11), 3852–3862. https://doi.org/10.1158/0008-5472.CAN-10-4460.

    Article  CAS  PubMed  Google Scholar 

  161. Mazar, J., Zhao, W., Khalil, A. M., Lee, B., Shelley, J., Govindarajan, S. S., et al. (2014). The functional characterization of long noncoding RNA SPRY4-IT1 in human melanoma cells. Oncotarget, 5(19), 8959–8969. https://doi.org/10.18632/oncotarget.1863.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Liu, T., Shen, S. K., Xiong, J. G., Xu, Y., Zhang, H. Q., Liu, H. J., et al. (2016). Clinical significance of long noncoding RNA SPRY4-IT1 in melanoma patients. FEBS Open Bio, 6(2), 147–154. https://doi.org/10.1002/2211-5463.12030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhou, Y., Wang, D. L., & Pang, Q. (2016). Long noncoding RNA SPRY4-IT1 is a prognostic factor for poor overall survival and has an oncogenic role in glioma. European Review for Medical and Pharmacological Sciences, 20(14), 3035–3039.

    CAS  PubMed  Google Scholar 

  164. Xie, H. W., Wu, Q. Q., Zhu, B., Chen, F. J., Ji, L., Li, S. Q., et al. (2014). Long noncoding RNA SPRY4-IT1 is upregulated in esophageal squamous cell carcinoma and associated with poor prognosis. Tumour Biology, 35(8), 7743–7754. https://doi.org/10.1007/s13277-014-2013-y.

    Article  CAS  PubMed  Google Scholar 

  165. Sun, M., Liu, X. H., Lu, K. H., Nie, F. Q., Xia, R., Kong, R., et al. (2014). EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4-IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death & Disease, 5, e1298. https://doi.org/10.1038/cddis.2014.256.

    Article  CAS  Google Scholar 

  166. Zhang, X., Chi, Q., & Zhao, Z. (2017). Up-regulation of long non-coding RNA SPRY4-IT1 promotes tumor cell migration and invasion in lung adenocarcinoma. Oncotarget, doi:https://doi.org/10.18632/oncotarget.16918.

  167. Jing, W., Gao, S., Zhu, M., Luo, P., Jing, X., Chai, H., et al. (2016). Potential diagnostic value of lncRNA SPRY4-IT1 in hepatocellular carcinoma. Oncology Reports, 36(2), 1085–1092. https://doi.org/10.3892/or.2016.4859.

    Article  CAS  PubMed  Google Scholar 

  168. Tan, W., Song, Z. Z., Xu, Q., Qu, X., Li, Z., Wang, Y., et al. (2017). Up-regulated expression of SPRY4-IT1 predicts poor prognosis in colorectal cancer. Medical Science Monitor, 23, 309–314.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Zhang, H. M., Yang, F. Q., Yan, Y., Che, J. P., & Zheng, J. H. (2014). High expression of long non-coding RNA SPRY4-IT1 predicts poor prognosis of clear cell renal cell carcinoma. International Journal of Clinical and Experimental Pathology, 7(9), 5801–5809.

    PubMed  PubMed Central  Google Scholar 

  170. Zhao, X. L., Zhao, Z. H., Xu, W. C., Hou, J. Q., & Du, X. Y. (2015). Increased expression of SPRY4-IT1 predicts poor prognosis and promotes tumor growth and metastasis in bladder cancer. International Journal of Clinical and Experimental Pathology, 8(2), 1954–1960.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Li, H., Liu, C., Lu, Z., Chen, L., Wang, J., Li, Y., et al. (2017). Upregulation of the long non-coding RNA SPRY4-IT1 indicates a poor prognosis and promotes tumorigenesis in ovarian cancer. Biomedicine & Pharmacotherapy, 88, 529–534. https://doi.org/10.1016/j.biopha.2017.01.037.

    Article  CAS  Google Scholar 

  172. Cao, Y., Liu, Y., Lu, X., Wang, Y., Qiao, H., & Liu, M. (2016). Upregulation of long noncoding RNA SPRY4-IT1 correlates with tumor progression and poor prognosis in cervical cancer. FEBS Open Bio, 6(9), 954–960. https://doi.org/10.1002/2211-5463.12102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Peng, W., Wu, G., Fan, H., Wu, J., & Feng, J. (2015). Long noncoding RNA SPRY4-IT1 predicts poor patient prognosis and promotes tumorigenesis in gastric cancer. Tumour Biology, 36(9), 6751–6758. https://doi.org/10.1007/s13277-015-3376-4.

    Article  CAS  PubMed  Google Scholar 

  174. Xie, M., Nie, F. Q., Sun, M., Xia, R., Liu, Y. W., Zhou, P., et al. (2015). Decreased long noncoding RNA SPRY4-IT1 contributing to gastric cancer cell metastasis partly via affecting epithelial-mesenchymal transition. Journal of Translational Medicine, 13, 250. https://doi.org/10.1186/s12967-015-0595-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Gutschner, T., Baas, M., & Diederichs, S. (2011). Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Research, 21(11), 1944–1954. https://doi.org/10.1101/gr.122358.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., & Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110(5), 563–574.

    Article  CAS  PubMed  Google Scholar 

  177. Walder, R. Y., & Walder, J. A. (1988). Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 85(14), 5011–5015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Goyal, A., Myacheva, K., Gross, M., Klingenberg, M., Duran Arque, B., & Diederichs, S. (2017). Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Research, 45(3), e12. https://doi.org/10.1093/nar/gkw883.

    PubMed  Google Scholar 

  179. Gutschner, T., Hammerle, M., Eissmann, M., Hsu, J., Kim, Y., Hung, G., et al. (2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Research, 73(3), 1180–1189. https://doi.org/10.1158/0008-5472.CAN-12-2850.

    Article  CAS  PubMed  Google Scholar 

  180. Seiler, J., Breinig, M., Caudron-Herger, M., Polycarpou-Schwarz, M., Boutros, M., & Diederichs, S. (2017). The lncRNA VELUCT strongly regulates viability of lung cancer cells despite its extremely low abundance. Nucleic Acids Research, 45(9), 5458–5469. https://doi.org/10.1093/nar/gkx076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kurreck, J., Wyszko, E., Gillen, C., & Erdmann, V. A. (2002). Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Research, 30(9), 1911–1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pavco, P. A., Bouhana, K. S., Gallegos, A. M., Agrawal, A., Blanchard, K. S., Grimm, S. L., et al. (2000). Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clinical Cancer Research, 6(5), 2094–2103.

    CAS  PubMed  Google Scholar 

  183. Muller, S., Appel, B., Balke, D., Hieronymus, R., & Nubel, C. (2016). Thirty-five years of research into ribozymes and nucleic acid catalysis: where do we stand today? F1000Res, 5. https://doi.org/10.12688/f1000research.8601.1.

  184. Franzen, S. (2010). Expanding the catalytic repertoire of ribozymes and deoxyribozymes beyond RNA substrates. Current Opinion in Molecular Therapeutics, 12(2), 223–232.

    CAS  PubMed  Google Scholar 

  185. Haemmerle, M., & Gutschner, T. (2015). Long non-coding RNAs in cancer and development: where do we go from here? International Journal of Molecular Sciences, 16(1), 1395–1405. https://doi.org/10.3390/ijms16011395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442–451. https://doi.org/10.1016/j.cell.2013.06.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Thakore, P. I., D'Ippolito, A. M., Song, L., Safi, A., Shivakumar, N. K., Kabadi, A. M., et al. (2015). Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nature Methods, 12(12), 1143–1149. https://doi.org/10.1038/nmeth.3630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Pedram Fatemi, R., Salah-Uddin, S., Modarresi, F., Khoury, N., Wahlestedt, C., & Faghihi, M. A. (2015). Screening for small-molecule modulators of long noncoding RNA-protein interactions using AlphaScreen. Journal of Biomolecular Screening, 20(9), 1132–1141. https://doi.org/10.1177/1087057115594187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Van Audenhove, I., & Gettemans, J. (2016). Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. eBioMedicine, 8, 40–48. https://doi.org/10.1016/j.ebiom.2016.04.028.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Watrin, M., Von Pelchrzim, F., Dausse, E., Schroeder, R., & Toulme, J. J. (2009). In vitro selection of RNA aptamers derived from a genomic human library against the TAR RNA element of HIV-1. Biochemistry, 48(26), 6278–6284. https://doi.org/10.1021/bi802373d.

    Article  CAS  PubMed  Google Scholar 

  191. DiGiusto, D. L., Krishnan, A., Li, L., Li, H., Li, S., Rao, A., et al. (2010). RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med, 2(36), 36ra43. https://doi.org/10.1126/scitranslmed.3000931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Li, M. J., Kim, J., Li, S., Zaia, J., Yee, J. K., Anderson, J., et al. (2005). Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Molecular Therapy, 12(5), 900–909. https://doi.org/10.1016/j.ymthe.2005.07.524.

    Article  CAS  PubMed  Google Scholar 

  193. Sun, T., Zhang, Y. S., Pang, B., Hyun, D. C., Yang, M., & Xia, Y. (2014). Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie (International Ed. in English), 53(46), 12320–12364. https://doi.org/10.1002/anie.201403036.

    CAS  Google Scholar 

  194. Kahlert, C., & Kalluri, R. (2013). Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl), 91(4), 431–437. https://doi.org/10.1007/s00109-013-1020-6.

    Article  CAS  Google Scholar 

  195. Kamerkar, S., LeBleu, V. S., Sugimoto, H., Yang, S., Ruivo, C. F., Melo, S. A., et al. (2017). Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 546(7659), 498–503. https://doi.org/10.1038/nature22341.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Takahashi, K., Yan, I. K., Haga, H., & Patel, T. (2014). Modulation of hypoxia-signaling pathways by extracellular linc-RoR. Journal of Cell Science, 127(Pt 7), 1585–1594. https://doi.org/10.1242/jcs.141069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lagarde, J., Uszczynska-Ratajczak, B., Santoyo-Lopez, J., Gonzalez, J. M., Tapanari, E., Mudge, J. M., et al. (2016). Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq). Nature Communications, 7, 12339. https://doi.org/10.1038/ncomms12339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Soares, R. J., Maglieri, G., Gutschner, T., Diederichs, S., Lund, A. H., Nielsen, B. S., et al. (2017). Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Research. https://doi.org/10.1093/nar/gkx946.

  199. Chung, W., Eum, H. H., Lee, H. O., Lee, K. M., Lee, H. B., Kim, K. T., et al. (2017). Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nature Communications, 8, 15081. https://doi.org/10.1038/ncomms15081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth 2nd, M. H., Treacy, D., Trombetta, J. J., et al. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 352(6282), 189–196. https://doi.org/10.1126/science.aad0501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Liu, S. J., Nowakowski, T. J., Pollen, A. A., Lui, J. H., Horlbeck, M. A., Attenello, F. J., et al. (2016). Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biology, 17, 67. https://doi.org/10.1186/s13059-016-0932-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcao, A., Xiao, L., et al. (2016). Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science, 352(6291), 1326–1329. https://doi.org/10.1126/science.aaf6463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Stahl, P. L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J., et al. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 353(6294), 78–82. https://doi.org/10.1126/science.aaf2403.

    Article  CAS  PubMed  Google Scholar 

  204. Fischer, B., Sandmann, T., Horn, T., Billmann, M., Chaudhary, V., Huber, W., et al. (2015). A map of directional genetic interactions in a metazoan cell. eLife, 4. https://doi.org/10.7554/eLife.05464.

  205. Khandelwal, N., Breinig, M., Speck, T., Michels, T., Kreutzer, C., Sorrentino, A., et al. (2015). A high-throughput RNAi screen for detection of immune-checkpoint molecules that mediate tumor resistance to cytotoxic T lymphocytes. EMBO Mol Med, 7(4), 450–463. https://doi.org/10.15252/emmm.201404414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wolf, J., Muller-Decker, K., Flechtenmacher, C., Zhang, F., Shahmoradgoli, M., Mills, G. B., et al. (2014). An in vivo RNAi screen identifies SALL1 as a tumor suppressor in human breast cancer with a role in CDH1 regulation. Oncogene, 33(33), 4273–4278. https://doi.org/10.1038/onc.2013.515.

    Article  CAS  PubMed  Google Scholar 

  207. Notzold, L., Frank, L., Gandhi, M., Polycarpou-Schwarz, M., Gross, M., Gunkel, M., et al. (2017). The long non-coding RNA LINC00152 is essential for cell cycle progression through mitosis in HeLa cells. Scientific Reports, 7(1), 2265. https://doi.org/10.1038/s41598-017-02357-0.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Liu, S. J., Horlbeck, M. A., Cho, S. W., Birk, H. S., Malatesta, M., He, D., et al. (2017). CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 355(6320). https://doi.org/10.1126/science.aah7111.

  209. Zhu, S., Li, W., Liu, J., Chen, C. H., Liao, Q., Xu, P., et al. (2016). Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nature Biotechnology, 34(12), 1279–1286. https://doi.org/10.1038/nbt.3715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Carugo, A., Genovese, G., Seth, S., Nezi, L., Rose, J. L., Bossi, D., et al. (2016). In vivo functional platform targeting patient-derived xenografts identifies WDR5-Myc association as a critical determinant of pancreatic cancer. Cell Reports, 16(1), 133–147. https://doi.org/10.1016/j.celrep.2016.05.063.

    Article  CAS  PubMed  Google Scholar 

  211. Cavalli, F. M. G., Remke, M., Rampasek, L., Peacock, J., Shih, D. J. H., Luu, B., et al. (2017). Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell, 31(6), 737–754 e736. https://doi.org/10.1016/j.ccell.2017.05.005.

    Article  CAS  PubMed  Google Scholar 

  212. Zhang, J., Fujimoto, J., Zhang, J., Wedge, D. C., Song, X., Zhang, J., et al. (2014). Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science, 346(6206), 256–259. https://doi.org/10.1126/science.1256930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Nakagawa, S. (2016). Lessons from reverse-genetic studies of lncRNAs. Biochimica et Biophysica Acta, 1859(1), 177–183. https://doi.org/10.1016/j.bbagrm.2015.06.011.

    Article  CAS  PubMed  Google Scholar 

  214. Engreitz, J. M., Sirokman, K., McDonel, P., Shishkin, A. A., Surka, C., Russell, P., et al. (2014). RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell, 159(1), 188–199. https://doi.org/10.1016/j.cell.2014.08.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., et al. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular Cell, 39(6), 925–938. https://doi.org/10.1016/j.molcel.2010.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. West, J. A., Davis, C. P., Sunwoo, H., Simon, M. D., Sadreyev, R. I., Wang, P. I., et al. (2014). The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Molecular Cell, 55(5), 791–802. https://doi.org/10.1016/j.molcel.2014.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Eissmann, M., Gutschner, T., Hammerle, M., Gunther, S., Caudron-Herger, M., Gross, M., et al. (2012). Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biology, 9(8), 1076–1087. https://doi.org/10.4161/rna.21089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Nakagawa, S., Ip, J. Y., Shioi, G., Tripathi, V., Zong, X., Hirose, T., et al. (2012). Malat1 is not an essential component of nuclear speckles in mice. RNA, 18(8), 1487–1499. https://doi.org/10.1261/rna.033217.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhang, B., Arun, G., Mao, Y. S., Lazar, Z., Hung, G., Bhattacharjee, G., et al. (2012). The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Reports, 2(1), 111–123. https://doi.org/10.1016/j.celrep.2012.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Tano, K., Mizuno, R., Okada, T., Rakwal, R., Shibato, J., Masuo, Y., et al. (2010). MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Letters, 584(22), 4575–4580. https://doi.org/10.1016/j.febslet.2010.10.008.

    Article  CAS  PubMed  Google Scholar 

  221. Arun, G., Diermeier, S., Akerman, M., Chang, K. C., Wilkinson, J. E., Hearn, S., et al. (2016). Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes & Development, 30(1), 34–51. https://doi.org/10.1101/gad.270959.115.

    Article  CAS  Google Scholar 

  222. Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12(3), 954–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Chen, J., Shishkin, A. A., Zhu, X., Kadri, S., Maza, I., Guttman, M., et al. (2016). Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs. Genome Biology, 17, 19. https://doi.org/10.1186/s13059-016-0880-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Hezroni, H., Koppstein, D., Schwartz, M. G., Avrutin, A., Bartel, D. P., & Ulitsky, I. (2015). Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Reports, 11(7), 1110–1122. https://doi.org/10.1016/j.celrep.2015.04.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Necsulea, A., Soumillon, M., Warnefors, M., Liechti, A., Daish, T., Zeller, U., et al. (2014). The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature, 505(7485), 635–640. https://doi.org/10.1038/nature12943.

    Article  CAS  PubMed  Google Scholar 

  226. Pervouchine, D. D., Djebali, S., Breschi, A., Davis, C. A., Barja, P. P., Dobin, A., et al. (2015). Enhanced transcriptome maps from multiple mouse tissues reveal evolutionary constraint in gene expression. Nature Communications, 6, 5903. https://doi.org/10.1038/ncomms6903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Washietl, S., Kellis, M., & Garber, M. (2014). Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Research, 24(4), 616–628. https://doi.org/10.1101/gr.165035.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Katrien Van Roosbroeck for reviewing and editing the manuscript.

Funding

Research in the Gutschner lab is supported by funds from the intramural Wilhelm-Roux-Program of the Medical Faculty, Martin-Luther-University Halle-Wittenberg. Georg Richtig received funding from the Austrian Science Fund FWF (W1241) and the Medical University Graz through the Ph.D. Program Molecular Fundamentals of Inflammation (DK-MOLIN).

Author information

Authors and Affiliations

Authors

Contributions

Tony Gutschner conceptualized, wrote, and edited the manuscript. Georg Richtig wrote the manuscript and generated the tables. Monika Hämmerle prepared the figure and helped editing the manuscript and prepared tables. Martin Pichler contributed to manuscript editing.

Corresponding authors

Correspondence to Tony Gutschner or Martin Pichler.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutschner, T., Richtig, G., Haemmerle, M. et al. From biomarkers to therapeutic targets—the promises and perils of long non-coding RNAs in cancer. Cancer Metastasis Rev 37, 83–105 (2018). https://doi.org/10.1007/s10555-017-9718-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9718-5

Keywords

Navigation