Skip to main content
Log in

Challenges in accurate registration of 3-D medical imaging and histopathology in primary prostate cancer

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Due to poor correlation between slice thickness and orientation, verification of medical imaging results by histology is difficult. Often validation of imaging findings of lesions suspicious for prostate cancer is driven by a subjective, visual approach to correlate in vivo images with histopathology. We describe fallacious assumptions in the correlation of imaging findings with pathology and identify the lack of accurate registration as a major obstacle in the validation of PET and PET/CT imaging in primary prostate cancer. Specific registration techniques that facilitate the most difficult part of the registration process—the mapping of pathology onto high-resolution imaging, preferably aided by the ex vivo prostate specimen—are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Cancer Society. Cancer facts and figures 2012. Atlanta: American Cancer Society; 2012

  2. Bill-Axelson A, Holmberg L, Filen F, Ruutu M, Garmo H, Busch C, et al. Radical prostatectomy versus watchful waiting in localized prostate cancer: the Scandinavian prostate cancer group-4 randomized trial. J Natl Cancer Inst. 2008;100:1144–54.

    Article  PubMed  Google Scholar 

  3. Epstein JI, Chan DW, Sokoll LJ, Walsh PC, Cox JL, Rittenhouse H, et al. Nonpalpable stage T1c prostate cancer: prediction of insignificant disease using free/total prostate specific antigen levels and needle biopsy findings. J Urol. 1998;160:2407–11.

    Article  PubMed  CAS  Google Scholar 

  4. Epstein JI, Walsh PC, Carmichael M, Brendler CB. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA. 1994;271:368–74.

    Article  PubMed  CAS  Google Scholar 

  5. Karavitakis M, Ahmed HU, Abel PD, Hazell S, Winkler MH. Tumor focality in prostate cancer: implications for focal therapy. Nat Rev Clin Oncol. 2011;8:48–55.

    Article  PubMed  Google Scholar 

  6. Farsad M, Schwarzenbock S, Krause BJ. PET/CT and choline: diagnosis and staging. Q J Nucl Med Mol Imaging. 2012;56:343–53.

    PubMed  CAS  Google Scholar 

  7. Li X, Liu Q, Wang M, Jin X, Yao S, Liu S, et al. C-11 choline PET/CT imaging for differentiating malignant from benign prostate lesions. Clin Nucl Med. 2008;33:671–6.

    Article  PubMed  CAS  Google Scholar 

  8. Piert M, Park H, Khan A, Siddiqui J, Hussain H, Chenevert T, et al. Detection of aggressive primary prostate cancer with 11C-choline PET/CT using multimodality fusion techniques. J Nucl Med. 2009;50:1585–93.

    Article  PubMed  CAS  Google Scholar 

  9. Chen J, Zhao Y, Li X, Sun P, Wang M, Wang R, et al. Imaging primary prostate cancer with 11C-choline PET/CT: relation to tumour stage, Gleason score and biomarkers of biologic aggressiveness. Radiol Oncol. 2012;46:179–88.

    Article  PubMed  CAS  Google Scholar 

  10. Mena E, Turkbey B, Mani H, Adler S, Valera VA, Bernardo M, et al. 11C-Acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation. J Nucl Med. 2012;53:538–45.

    Article  PubMed  CAS  Google Scholar 

  11. Cohen MS, Hanley RS, Kurteva T, Ruthazer R, Silverman ML, Sorcini A, et al. Comparing the Gleason prostate biopsy and Gleason prostatectomy grading system: the Lahey Clinic Medical Center experience and an international meta-analysis. Eur Urol. 2008;54:371–81.

    Article  PubMed  Google Scholar 

  12. Orczyk C, Mikheev A, Rosenkrantz A, Melamed J, Taneja SS, Rusinek H. Imaging of prostate cancer: A platform for 3D co-registration of in-vivo MRI ex-vivo MRI and pathology. Proc SPIE. 2012;8316:83162M

  13. Jonmarker S, Valdman A, Lindberg A, Hellstrom M, Egevad L. Tissue shrinkage after fixation with formalin injection of prostatectomy specimens. Virchows Arch. 2006;449:297–301.

    Article  PubMed  Google Scholar 

  14. Schned AR, Wheeler KJ, Hodorowski CA, Heaney JA, Ernstoff MS, Amdur RJ, et al. Tissue-shrinkage correction factor in the calculation of prostate cancer volume. Am J Surg Pathol. 1996;20:1501–6.

    Article  PubMed  CAS  Google Scholar 

  15. Kim B, Boes JL, Frey KA, Meyer CR. Mutual information for automated unwarping of rat brain autoradiographs. Neuroimage. 1997;5:31–40.

    Article  PubMed  CAS  Google Scholar 

  16. Balter JM, Sandler HM, Lam K, Bree RL, Lichter AS, Ten Haken RK. Measurement of prostate movement over the course of routine radiotherapy using implanted markers. Int J Radiat Oncol Biol Phys. 1995;31:113–8.

    Article  PubMed  CAS  Google Scholar 

  17. Dinkel J, Thieke C, Plathow C, Zamecnik P, Prum H, Huber PE, et al. Respiratory-induced prostate motion: characterization and quantification in dynamic MRI. Strahlenther Onkol. 2011;187:426–32.

    Article  PubMed  Google Scholar 

  18. Malone S, Crook JM, Kendal WS, Szanto J. Respiratory-induced prostate motion: quantification and characterization. Int J Radiat Oncol Biol Phys. 2000;48:105–9.

    Article  PubMed  CAS  Google Scholar 

  19. Udrescu C, Jalade P, de Bari B, Michel-Amadry G, Chapet O. Evaluation of the respiratory prostate motion with four-dimensional computed tomography scan acquisitions using three implanted markers. Radiother Oncol. 2012;103:266–9.

    Article  PubMed  Google Scholar 

  20. Park H, Piert MR, Khan A, Shah R, Hussain H, Siddiqui J, et al. Registration methodology for histological sections and in vivo imaging of human prostate. Acad Radiol. 2008;15:1027–39.

    Article  PubMed  Google Scholar 

  21. Zachariah CR, Pitt D, Wassenar P, Clymer BD, Abduljalil AM, Knopp MV, et al. Quantification of formalin-fixed MS brain tissue parameters T1, T2*, PD and phase at 7T and comparison with histopathology. Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine; 2010 May 1–7; Stockholm, Sweden. Berkeley: International Society for Magnetic Resonance in Medicine; 2010. p. 2073.

  22. Park H, Meyer CR, Wood D, Khan A, Shah R, Hussain H, et al. Validation of automatic target volume definition as demonstrated for 11C-choline PET/CT of human prostate cancer using multi-modality fusion techniques. Acad Radiol. 2010;17:614–23.

    Article  PubMed  Google Scholar 

  23. Park H, Wood D, Hussain H, Meyer CR, Shah RB, Johnson TD, et al. Introducing Parametric Fusion PET/MRI of Primary Prostate Cancer. J Nucl Med Mol Imaging. 2012;53:546–51.

    CAS  Google Scholar 

  24. Garcia-Parra R, Wood D, Shah R, Siddiqui J, Hussain H, Park H, et al. Investigation on tumor hypoxia in resectable primary prostate cancer as demonstrated by 18F-FAZA PET/CT utilizing multimodality fusion techniques. Eur J Nucl Med Mol Imaging. 2011;38:1816–23.

    Article  PubMed  Google Scholar 

  25. Drew B, Jones EC, Reinsberg S, Yung AC, Goldenberg SL, Kozlowski P. Device for sectioning prostatectomy specimens to facilitate comparison between histology and in vivo MRI. J Magn Reson Imaging. 2010;32:992–6.

    Article  PubMed  Google Scholar 

  26. Chen LH, Ho H, Lazaro R, Thng CH, Yuen J, Ng WS, et al. Optimum slicing of radical prostatectomy specimens for correlation between histopathology and medical images. Int J Comput Assist Radiol Surg. 2010;5:471–87.

    Article  PubMed  Google Scholar 

  27. Shah V, Pohida T, Turkbey B, Mani H, Merino M, Pinto PA, et al. A method for correlating in vivo prostate magnetic resonance imaging and histopathology using individualized magnetic resonance-based molds. Rev Sci Instrum. 2009;80:104301.

    Article  PubMed  Google Scholar 

  28. Trivedi H, Turkbey B, Rastinehad AR, Benjamin CJ, Bernardo M, Pohida T, et al. Use of patient-specific MRI-based prostate mold for validation of multiparametric MRI in localization of prostate cancer. Urology. 2012;79:233–9.

    Article  PubMed  Google Scholar 

  29. Fan X, Haney CR, Agrawal G, Pelizzari CA, Antic T, Eggener SE, et al. High-resolution MRI of excised human prostate specimens acquired with 9.4T in detection and identification of cancers: validation of a technique. J Magn Reson Imaging. 2011;34:956–61.

    Article  PubMed  Google Scholar 

  30. Meyer CR, Wahl RL. Image fusion. In: Wahl RL, editor. Principle and practices of PET and PET/CT. 2nd ed. Philadelphia: Williams and Wilkins; 2009. p. 111–6.

    Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morand Piert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, C., Ma, B., Kunju, L.P. et al. Challenges in accurate registration of 3-D medical imaging and histopathology in primary prostate cancer. Eur J Nucl Med Mol Imaging 40 (Suppl 1), 72–78 (2013). https://doi.org/10.1007/s00259-013-2382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2382-2

Keywords

Navigation