Skip to main content

Advertisement

Log in

RANK-mediated signaling network and cancer metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cancer metastasis is highly inefficient and complex. Common features of metastatic cancer cells have been observed using cancer cell lines and genetically reconstituted mouse and human tumor xenograft models. These include cancer cell interaction with the tumor microenvironment and the ability of cancer cells to sense extracellular stimuli and adapt to adverse growth conditions. This review summarizes the coordinated response of cancer cells to soluble growth factors, such as RANKL, by a unique feed forward mechanism employing coordinated upregulation of RANKL and c-Met with downregulation of androgen receptor. The RANK-mediated signal network was found to drive epithelial to mesenchymal transition in prostate cancer cells, promote osteomimicry and the ability of prostate cancer cells to assume stem cell and neuroendocrine phenotypes, and confer the ability of prostate cancer cells to home to bone. Prostate cancer cells with activated RANK-mediated signal network were observed to recruit and even transform the non-tumorigenic prostate cancer cells to participate in bone and soft tissue colonization. The coordinated regulation of cancer cell invasion and metastasis by the feed forward mechanism involving RANKL, c-Met, transcription factors, and VEGF-neuropilin could offer new therapeutic opportunities to target prostate cancer bone and soft tissue metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572. doi:10.1038/nrc865.

    CAS  PubMed  Google Scholar 

  2. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458. doi:10.1038/nrc1098.

    CAS  PubMed  Google Scholar 

  3. Kang, Y., & Massague, J. (2004). Epithelial-mesenchymal transitions: twist in development and metastasis. Cell, 118(3), 277–279. doi:10.1016/j.cell.2004.07.011.

    CAS  PubMed  Google Scholar 

  4. Alderton, G. K. (2012). Metastasis: Converging targets. Naturforschende Review Cancer, 12(12), 793. doi:10.1038/nrc3411.

    CAS  Google Scholar 

  5. Hardy, K. M., Kirschmann, D. A., Seftor, E. A., Margaryan, N. V., Postovit, L. M., Strizzi, L., et al. (2010). Regulation of the embryonic morphogen Nodal by Notch4 facilitates manifestation of the aggressive melanoma phenotype. Cancer Research, 70(24), 10340–10350. doi:10.1158/0008-5472.CAN-10-0705.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Cui, H., Grosso, S., Schelter, F., Mari, B., & Kruger, A. (2012). On the Pro-Metastatic Stress Response to Cancer Therapies: Evidence for a Positive Co-Operation between TIMP-1, HIF-1alpha, and miR-210. Frontiers in Pharmacology, 3, 134. doi:10.3389/fphar.2012.00134.

    PubMed Central  PubMed  Google Scholar 

  7. Qi, Y., Li, R. M., Kong, F. M., Li, H., Yu, J. P., & Ren, X. B. (2012). How do tumor stem cells actively escape from host immunosurveillance? Biochemical and Biophysical Research Communications, 420(4), 699–703. doi:10.1016/j.bbrc.2012.03.086.

    CAS  PubMed  Google Scholar 

  8. Mitchell, M. J., & King, M. R. (2013). Computational and experimental models of cancer cell response to fluid shear stress. Frontiers Oncologica, 3, 44. doi:10.3389/fonc.2013.00044.

    Google Scholar 

  9. Di Vizio, D., Morello, M., Dudley, A. C., Schow, P. W., Adam, R. M., Morley, S., et al. (2012). Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. The American Journal of Pathology, 181(5), 1573–1584. doi:10.1016/j.ajpath.2012.07.030.

    PubMed Central  PubMed  Google Scholar 

  10. Odero-Marah, V. A., Wang, R., Chu, G., Zayzafoon, M., Xu, J., Shi, C., et al. (2008). Receptor activator of NF-kappaB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Research, 18(8), 858–870. doi:10.1038/cr.2008.84.

    CAS  PubMed  Google Scholar 

  11. Zhau, H. E., Odero-Marah, V., Lue, H. W., Nomura, T., Wang, R., Chu, G., et al. (2008). Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clinical and Experimental Metastasis, 25(6), 601–610. doi:10.1007/s10585-008-9183-1.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhau, H. E., Li, Q., & Chung, L. W. (2013). Interracial differences in prostate cancer progression among patients from the United States, China and Japan. Asian Journal of Andrology. doi:10.1038/aja.2013.86.

    PubMed Central  PubMed  Google Scholar 

  13. Hu, P. Z., Chung, L. W., Berel, D., Frierson, H. F., Yang, H., Liu, C. Y., et al. (2013). Convergent RANK- and c-Met-mediated signaling components predict survival of patients with prostate cancer: an interracial comparative study. PLoS One., 8, e73081.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Roodman, G. D. (2012). Genes associate with abnormal bone cell activity in bone metastasis. Cancer and Metastasis Reviews, 31(3–4), 569–578. doi:10.1007/s10555-012-9372-x.

    CAS  PubMed  Google Scholar 

  15. Joshi, P. A., Jackson, H. W., Beristain, A. G., Di Grappa, M. A., Mote, P. A., Clarke, C. L., et al. (2010). Progesterone induces adult mammary stem cell expansion. Nature, 465(7299), 803–807. doi:10.1038/nature09091.

    CAS  PubMed  Google Scholar 

  16. Li, X., Ominsky, M. S., Stolina, M., Warmington, K. S., Geng, Z., Niu, Q. T., et al. (2009). Increased RANK ligand in bone marrow of orchiectomized rats and prevention of their bone loss by the RANK ligand inhibitor osteoprotegerin. Bone, 45(4), 669–676. doi:10.1016/j.bone.2009.06.011.

    CAS  PubMed  Google Scholar 

  17. Sanbe, T., Tomofuji, T., Ekuni, D., Azuma, T., Irie, K., Tamaki, N., et al. (2009). Vitamin C intake inhibits serum lipid peroxidation and osteoclast differentiation on alveolar bone in rats fed on a high-cholesterol diet. Archives of Oral Biology, 54(3), 235–240. doi:10.1016/j.archoralbio.2008.11.001.

    CAS  PubMed  Google Scholar 

  18. Roodman, G. D., & Dougall, W. C. (2008). RANK ligand as a therapeutic target for bone metastases and multiple myeloma. Cancer Treatment Reviews, 34(1), 92–101. doi:10.1016/j.ctrv.2007.09.002.

    CAS  PubMed  Google Scholar 

  19. Smith, M. R., Saad, F., Coleman, R., Shore, N., Fizazi, K., Tombal, B., et al. (2012). Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet, 379(9810), 39–46. doi:10.1016/S0140-6736(11)61226-9.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Dougall, W. C. (2012). Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clinical Cancer Research, 18(2), 326–335. doi:10.1158/1078-0432.CCR-10-2507.

    CAS  PubMed  Google Scholar 

  21. Chu, C. Y. (2011). The role of RANKL in prostate cancer progression and bone metastasis. Ph.D Thesis., Georgia State University,

  22. Hu, P., Chu, G. C., Zhu, G., Yang, H., Luthringer, D., Prins, G., et al. (2011). Multiplexed quantum dot labeling of activated c-Met signaling in castration-resistant human prostate cancer. PLoS One, 6(12), e28670. doi:10.1371/journal.pone.0028670.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Cox, R. F., Jenkinson, A., Pohl, K., O’Brien, F. J., & Morgan, M. P. (2012). Osteomimicry of mammary adenocarcinoma cells in vitro; increased expression of bone matrix proteins and proliferation within a 3D collagen environment. PLoS One, 7(7), e41679. doi:10.1371/journal.pone.0041679.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Koeneman, K. S., Yeung, F., & Chung, L. W. (1999). Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate, 39(4), 246–261.

    CAS  PubMed  Google Scholar 

  25. Knerr, K., Ackermann, K., Neidhart, T., & Pyerin, W. (2004). Bone metastasis: Osteoblasts affect growth and adhesion regulons in prostate tumor cells and provoke osteomimicry. International Journal of Cancer, 111(1), 152–159. doi:10.1002/ijc.20223.

    CAS  Google Scholar 

  26. Rucci, N., & Teti, A. (2010). Osteomimicry: how tumor cells try to deceive the bone. Frontiers in Bioscience (Scholar Edition), 2, 907–915.

    Google Scholar 

  27. Kavitha, C. V., Deep, G., Gangar, S. C., Jain, A. K., Agarwal, C., & Agarwal, R. (2012). Silibinin inhibits prostate cancer cells- and RANKL-induced osteoclastogenesis by targeting NFATc1, NF-kappaB, and AP-1 Activation in RAW264.7 cells. Molecular Carcinogenesis. doi:10.1002/mc.21959.

    PubMed  Google Scholar 

  28. Graham, T. R., Agrawal, K. C., & Abdel-Mageed, A. B. (2010). Independent and cooperative roles of tumor necrosis factor-alpha, nuclear factor-kappaB, and bone morphogenetic protein-2 in regulation of metastasis and osteomimicry of prostate cancer cells and differentiation and mineralization of MC3T3-E1 osteoblast-like cells. Cancer Science, 101(1), 103–111. doi:10.1111/j.1349-7006.2009.01356.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Yuen, H. F., Kwok, W. K., Chan, K. K., Chua, C. W., Chan, Y. P., Chu, Y. Y., et al. (2008). TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction. Carcinogenesis, 29(8), 1509–1518. doi:10.1093/carcin/bgn105.

    CAS  PubMed  Google Scholar 

  30. Glait-Santar, C., & Benayahu, D. (2012). Regulation of SVEP1 gene expression by 17beta-estradiol and TNFalpha in pre-osteoblastic and mammary adenocarcinoma cells. The Journal of Steroid Biochemistry and Molecular Biology, 130(1–2), 36–44. doi:10.1016/j.jsbmb.2011.12.015.

    CAS  PubMed  Google Scholar 

  31. Josson, S., Nomura, T., Lin, J. T., Huang, W. C., Wu, D., Zhau, H. E., et al. (2011). beta2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Research, 71(7), 2600–2610. doi:10.1158/0008-5472.CAN-10-3382.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Huang, W. C., Havel, J. J., Zhau, H. E., Qian, W. P., Lue, H. W., Chu, C. Y., et al. (2008). Beta2-microglobulin signaling blockade inhibited androgen receptor axis and caused apoptosis in human prostate cancer cells. Clinical Cancer Research, 14(17), 5341–5347. doi:10.1158/1078-0432.CCR-08-0793.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Huang, W. C., Wu, D., Xie, Z., Zhau, H. E., Nomura, T., Zayzafoon, M., et al. (2006). beta2-microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis. Cancer Research, 66(18), 9108–9116. doi:10.1158/0008-5472.CAN-06-1996.

    CAS  PubMed  Google Scholar 

  34. Huang, W. C., Zhau, H. E., & Chung, L. W. (2010). Androgen receptor survival signaling is blocked by anti-beta2-microglobulin monoclonal antibody via a MAPK/lipogenic pathway in human prostate cancer cells. The Journal of Biological Chemistry, 285(11), 7947–7956. doi:10.1074/jbc.M109.092759.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Nomura, T., Huang, W. C., Seo, S., Zhau, H. E., Mimata, H., & Chung, L. W. (2007). Targeting beta2-microglobulin mediated signaling as a novel therapeutic approach for human renal cell carcinoma. The Journal of Urology, 178(1), 292–300. doi:10.1016/j.juro.2007.03.007.

    CAS  PubMed  Google Scholar 

  36. Nomura, T., Huang, W. C., Zhau, H. E., Josson, S., Mimata, H., & Chung, L. W. (2013). beta2-Microglobulin-mediated signaling as a target for cancer therapy. Anticancer Agents Med Chem. doi:10.2174/18715206113139990092

  37. Nomura, T., Huang, W. C., Zhau, H. E., Wu, D., Xie, Z., Mimata, H., et al. (2006). Beta2-microglobulin promotes the growth of human renal cell carcinoma through the activation of the protein kinase A, cyclic AMP-responsive element-binding protein, and vascular endothelial growth factor axis. Clinical Cancer Research, 12(24), 7294–7305. doi:10.1158/1078-0432.CCR-06-2060.

    CAS  PubMed  Google Scholar 

  38. Lue, H. W., Yang, X., Wang, R., Qian, W., Xu, R. Z., Lyles, R., et al. (2011). LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One, 6(11), e27720. doi:10.1371/journal.pone.0027720.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Gross, M., Top, I., Laux, I., Katz, J., Curran, J., Tindell, C., et al. (2007). Beta-2-microglobulin is an androgen-regulated secreted protein elevated in serum of patients with advanced prostate cancer. Clinical Cancer Research, 13(7), 1979–1986. doi:10.1158/1078-0432.CCR-06-1156.

    CAS  PubMed  Google Scholar 

  40. Michaelson, J. (1983). Genetics of beta-2 microglobulin in the mouse. Immunogenetics, 17(3), 219–260.

    CAS  PubMed  Google Scholar 

  41. Solheim, J. C. (1999). Class I MHC molecules: assembly and antigen presentation. Immunological Reviews, 172, 11–19.

    CAS  PubMed  Google Scholar 

  42. Josson, S., Matsuoka, Y., Gururajan, M., Nomura, T., Huang, W. C., Yang, X., et al. (2013). Inhibition of beta2-Microglobulin/Hemochromatosis Enhances Radiation Sensitivity by Induction of Iron Overload in Prostate Cancer Cells. PLoS One, 8(7), e68366. doi:10.1371/journal.pone.0068366.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Josson, S., Matsuoka, Y., Chung, L. W., Zhau, H. E., & Wang, R. (2010). Tumor-stroma co-evolution in prostate cancer progression and metastasis. Seminars in Cell and Developmental Biology, 21(1), 26–32. doi:10.1016/j.semcdb.2009.11.016.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Yang, J., Qian, J., Wezeman, M., Wang, S., Lin, P., Wang, M., et al. (2006). Targeting beta2-microglobulin for induction of tumor apoptosis in human hematological malignancies. Cancer Cell, 10(4), 295–307. doi:10.1016/j.ccr.2006.08.025.

    CAS  PubMed  Google Scholar 

  45. Yang, J., Zhang, X., Wang, J., Qian, J., Zhang, L., Wang, M., et al. (2007). Anti beta2-microglobulin monoclonal antibodies induce apoptosis in myeloma cells by recruiting MHC class I to and excluding growth and survival cytokine receptors from lipid rafts. Blood, 110(8), 3028–3035. doi:10.1182/blood-2007-06-094417.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Guise, T. A., Kozlow, W. M., Heras-Herzig, A., Padalecki, S. S., Yin, J. J., & Chirgwin, J. M. (2005). Molecular mechanisms of breast cancer metastases to bone. Clinical of Breast Cancer, 5(2), S46–S53.

    CAS  Google Scholar 

  47. Atwood, S. X., Li, M., Lee, A., Tang, J. Y., & Oro, A. E. (2013). GLI activation by atypical protein kinase C iota/lambda regulates the growth of basal cell carcinomas. Nature, 494(7438), 484–488. doi:10.1038/nature11889.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Bershteyn, M., Atwood, S. X., Woo, W. M., Li, M., & Oro, A. E. (2010). MIM and cortactin antagonism regulates ciliogenesis and hedgehog signaling. Developmental Cell, 19(2), 270–283. doi:10.1016/j.devcel.2010.07.009.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Dunkel, Y., Ong, A., Notani, D., Mittal, Y., Lam, M., Mi, X., et al. (2012). STAT3 protein up-regulates Galpha-interacting vesicle-associated protein (GIV)/Girdin expression, and GIV enhances STAT3 activation in a positive feedback loop during wound healing and tumor invasion/metastasis. The Journal of Biological Chemistry, 287(50), 41667–41683. doi:10.1074/jbc.M112.390781.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Hassan, M. Q., Maeda, Y., Taipaleenmaki, H., Zhang, W., Jafferji, M., Gordon, J. A., et al. (2012). miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. The Journal of Biological Chemistry, 287(50), 42084–42092. doi:10.1074/jbc.M112.377515.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Kinoshita, T., Hanazawa, T., Nohata, N., Kikkawa, N., Enokida, H., Yoshino, H., et al. (2012). Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion through targeting laminin-332 in head and neck squamous cell carcinoma. Oncotarget, 3(11), 1386–1400.

    PubMed Central  PubMed  Google Scholar 

  52. Tatarano, S., Chiyomaru, T., Kawakami, K., Enokida, H., Yoshino, H., Hidaka, H., et al. (2011). miR-218 on the genomic loss region of chromosome 4p15.31 functions as a tumor suppressor in bladder cancer. International Journal of Oncology, 39(1), 13–21. doi:10.3892/ijo.2011.1012.

    CAS  PubMed  Google Scholar 

  53. Uesugi, A., Kozaki, K., Tsuruta, T., Furuta, M., Morita, K., Imoto, I., et al. (2011). The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Research, 71(17), 5765–5778. doi:10.1158/0008-5472.CAN-11-0368.

    CAS  PubMed  Google Scholar 

  54. Yamamoto, N., Kinoshita, T., Nohata, N., Itesako, T., Yoshino, H., Enokida, H., et al. (2013). Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion by targeting focal adhesion pathways in cervical squamous cell carcinoma. International Journal of Oncology, 42(5), 1523–1532. doi:10.3892/ijo.2013.1851.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Yamasaki, T., Seki, N., Yoshino, H., Itesako, T., Hidaka, H., Yamada, Y., et al. (2013). MicroRNA-218 Inhibits Cell Migration and Invasion in Renal Cell Carcinoma through Targeting Caveolin-2 Involved in Focal Adhesion Pathway. The Journal of Urology, 190(3), 1059–1068. doi:10.1016/j.juro.2013.02.089.

    CAS  PubMed  Google Scholar 

  56. Tang, Y., Kesavan, P., Nakada, M. T., & Yan, L. (2004). Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Molecular Cancer Research, 2(2), 73–80.

    CAS  PubMed  Google Scholar 

  57. Tang, Y., Nakada, M. T., Kesavan, P., McCabe, F., Millar, H., Rafferty, P., et al. (2005). Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Research, 65(8), 3193–3199. doi:10.1158/0008-5472.CAN-04-3605.

    CAS  PubMed  Google Scholar 

  58. Tang, Y., Nakada, M. T., Rafferty, P., Laraio, J., McCabe, F. L., Millar, H., et al. (2006). Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Molecular Cancer Research, 4(6), 371–377. doi:10.1158/1541-7786.MCR-06-0042.

    CAS  PubMed  Google Scholar 

  59. Marioni, G., Blandamura, S., Giacomelli, L., Calgaro, N., Segato, P., Leo, G., et al. (2005). Nuclear expression of maspin is associated with a lower recurrence rate and a longer disease-free interval after surgery for squamous cell carcinoma of the larynx. Histopathology, 46(5), 576–582. doi:10.1111/j.1365-2559.2005.02141.x.

    CAS  PubMed  Google Scholar 

  60. Chu, G. C.-Y., Zhau, H. E., Wang, R. Rogatko, A., Feng, X., Zayzafoon, M., Liu, Y., Farach-Carson, M. C., You, S., Kim, J., Freeman, M. R., Chung, L. W. (2013). RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer (in press).

  61. Chu, G. C.-Y., Zhau, H. E., Wang, R. Rogatko, A., Feng, X., Zayzafoon, M., Liu, Y., Farach-Carson, M. C., Chung, L. W. (2013). Autocrine/paracrine RANKL-RANK signaling promotes cancer bone metastasis and establishes premetastatic niche recruiting bystander cancer cells to participate in the metastatic process. Washington, DC: American Association for Cancer Research.

  62. Kaur, B., Khwaja, F. W., Severson, E. A., Matheny, S. L., Brat, D. J., & Van Meir, E. G. (2005). Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncology, 7(2), 134–153. doi:10.1215/S1152851704001115.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Kimbro, K. S., & Simons, J. W. (2006). Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocrine-Related Cancer, 13(3), 739–749. doi:10.1677/erc.1.00728.

    CAS  PubMed  Google Scholar 

  64. Powis, G., & Kirkpatrick, L. (2004). Hypoxia inducible factor-1alpha as a cancer drug target. Molecular Cancer Therapeutics, 3(5), 647–654.

    CAS  PubMed  Google Scholar 

  65. Smith, B. N., & Odero-Marah, V. A. (2012). The role of Snail in prostate cancer. Cell Adhesion & Migration, 6(5), 433–441. doi:10.4161/cam.21687.

    Google Scholar 

  66. Jiang, J., Tang, Y. L., & Liang, X. H. (2011). EMT: a new vision of hypoxia promoting cancer progression. Cancer Biology and Therapy, 11(8), 714–723.

    CAS  PubMed  Google Scholar 

  67. Konisti, S., Kiriakidis, S., & Paleolog, E. M. (2012). Hypoxia–a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nature Reviews. Rheumatology, 8(3), 153–162. doi:10.1038/nrrheum.2011.205.

    CAS  PubMed  Google Scholar 

  68. McNamee, E. N., Korns Johnson, D., Homann, D., & Clambey, E. T. (2013). Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunologic Research, 55(1–3), 58–70. doi:10.1007/s12026-012-8349-8.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Shay, J. E., & Celeste Simon, M. (2012). Hypoxia-inducible factors: crosstalk between inflammation and metabolism. Seminars in Cell and Developmental Biology, 23(4), 389–394. doi:10.1016/j.semcdb.2012.04.004.

    CAS  PubMed  Google Scholar 

  70. Tomita, S., Kihira, Y., Imanishi, M., Fukuhara, Y., Imamura, Y., Ishizawa, K., et al. (2011). Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery:inflammatory responses of hypoxia-inducible factor 1alpha (HIF-1alpha) in T cells observed in development of vascular remodeling. Journal of Pharmacological Sciences, 115(4), 433–439.

    CAS  PubMed  Google Scholar 

  71. Brabletz, S., & Brabletz, T. (2010). The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Reports, 11(9), 670–677. doi:10.1038/embor.2010.117.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Guo, L., Chen, C., Shi, M., Wang, F., Chen, X., Diao, D., et al. (2013). Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene. doi:10.1038/onc.2012.573.

    Google Scholar 

  73. Chung, L. W. (1995). The role of stromal-epithelial interaction in normal and malignant growth. Cancer Surveys, 23, 33–42.

    CAS  PubMed  Google Scholar 

  74. Cunha, G. R. (1994). Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer, 74(3 Suppl), 1030–1044.

    CAS  PubMed  Google Scholar 

  75. Donjacour, A. A., & Cunha, G. R. (1991). Stromal regulation of epithelial function. Cancer Treatment and Research, 53, 335–364.

    CAS  PubMed  Google Scholar 

  76. Roberts, A. B., & Sporn, M. B. (1987). Transforming growth factor-beta: potential common mechanisms mediating its effects on embryogenesis, inflammation-repair, and carcinogenesis. International Journal of Radiation Applications and Instrumentation. Part B, 14(4), 435–439.

    CAS  Google Scholar 

  77. Sakakura, T. (1991). New aspects of stroma-parenchyma relations in mammary gland differentiation. International Review of Cytology, 125, 165–202.

    CAS  PubMed  Google Scholar 

  78. Chung, L. W., Huang, W. C., Sung, S. Y., Wu, D., Odero-Marah, V., Nomura, T., et al. (2006). Stromal-epithelial interaction in prostate cancer progression. Clinical Genitourinary Cancer, 5(2), 162–170. doi:10.3816/CGC.2006.n.034.

    PubMed  Google Scholar 

  79. Clezardin, P., & Teti, A. (2007). Bone metastasis: pathogenesis and therapeutic implications. Clinical and Experimental Metastasis, 24(8), 599–608. doi:10.1007/s10585-007-9112-8.

    CAS  PubMed  Google Scholar 

  80. Tsubochi, H., Endo, S., Oda, Y., & Dobashi, Y. (2013). Carcinoid tumor of the lung with massive ossification: report of a case showing the evidence of osteomimicry and review of the literature. International Journal of Clinical and Experimental Pathology, 6(5), 957–961.

    PubMed Central  PubMed  Google Scholar 

  81. Bhatia, M. (2010). Developmental biology. Microenvironment mimicry. Science, 329(5995), 1024–1025. doi:10.1126/science.1194919.

    CAS  PubMed  Google Scholar 

  82. Bissell, M. J. (1999). Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch. A rose by any other name? American Journal of Pathologists, 155(3), 675–679. doi:10.1016/S0002-9440(10)65164-4.

    CAS  Google Scholar 

  83. Folberg, R., Hendrix, M. J., & Maniotis, A. J. (2000). Vasculogenic mimicry and tumor angiogenesis. The American Journal of Pathology, 156(2), 361–381. doi:10.1016/S0002-9440(10)64739-6.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Folberg, R., & Maniotis, A. J. (2004). Vasculogenic mimicry. APMIS, 112(7–8), 508–525. doi:10.1111/j.1600-0463.2004.apm11207-0810.x.

    PubMed  Google Scholar 

  85. Hendrix, M. J., Seftor, E. A., Hess, A. R., & Seftor, R. E. (2003). Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nature Reviews Cancer, 3(6), 411–421. doi:10.1038/nrc1092.

    CAS  PubMed  Google Scholar 

  86. McDonald, D. M., Munn, L., & Jain, R. K. (2000). Vasculogenic mimicry: how convincing, how novel, and how significant? The American Journal of Pathology, 156(2), 383–388. doi:10.1016/S0002-9440(10)64740-2.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Hugo, H., Ackland, M. L., Blick, T., Lawrence, M. G., Clements, J. A., Williams, E. D., et al. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213(2), 374–383. doi:10.1002/jcp.21223.

    CAS  PubMed  Google Scholar 

  88. Nauseef, J. T., & Henry, M. D. (2011). Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nature Reviews. Urology, 8(8), 428–439. doi:10.1038/nrurol.2011.85.

    PubMed  Google Scholar 

  89. van der Pluijm, G. (2011). Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone, 48(1), 37–43. doi:10.1016/j.bone.2010.07.023.

    PubMed  Google Scholar 

  90. Cogle, C. R., Theise, N. D., Fu, D., Ucar, D., Lee, S., Guthrie, S. M., et al. (2007). Bone marrow contributes to epithelial cancers in mice and humans as developmental mimicry. Stem Cells, 25(8), 1881–1887. doi:10.1634/stemcells.2007-0163.

    PubMed  Google Scholar 

  91. Ping, Y. F., & Bian, X. W. (2011). Consice review: Contribution of cancer stem cells to neovascularization. Stem Cells, 29(6), 888–894. doi:10.1002/stem.650.

    CAS  PubMed  Google Scholar 

  92. Timar, J., Tovari, J., Raso, E., Meszaros, L., Bereczky, B., & Lapis, K. (2005). Platelet-mimicry of cancer cells: epiphenomenon with clinical significance. Oncology, 69(3), 185–201. doi:10.1159/000088069.

    PubMed  Google Scholar 

  93. Yao, X. H., Ping, Y. F., & Bian, X. W. (2011). Contribution of cancer stem cells to tumor vasculogenic mimicry. Protein & Cell, 2(4), 266–272. doi:10.1007/s13238-011-1041-2.

    Google Scholar 

  94. Danza, G., Di Serio, C., Rosati, F., Lonetto, G., Sturli, N., Kacer, D., et al. (2012). Notch signaling modulates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells. Molecular Cancer Research, 10(2), 230–238. doi:10.1158/1541-7786.MCR-11-0296.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Eisinger-Mathason, T. S., & Simon, M. C. (2010). HIF-1alpha partners with FoxA2, a neuroendocrine-specific transcription factor, to promote tumorigenesis. Cancer Cell, 18(1), 3–4. doi:10.1016/j.ccr.2010.06.007.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. McKeithen, D., Graham, T., Chung, L. W., & Odero-Marah, V. (2010). Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate, 70(9), 982–992. doi:10.1002/pros.21132.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Spiotto, M. T., & Chung, T. D. (2000). STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate, 42(3), 186–195.

    CAS  PubMed  Google Scholar 

  98. Lang, S. H., Sharrard, R. M., Stark, M., Villette, J. M., & Maitland, N. J. (2001). Prostate epithelial cell lines form spheroids with evidence of glandular differentiation in three-dimensional Matrigel cultures. British Journal of Cancer, 85(4), 590–599. doi:10.1054/bjoc.2001.1967.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Lang, S. H., Stark, M., Collins, A., Paul, A. B., Stower, M. J., & Maitland, N. J. (2001). Experimental prostate epithelial morphogenesis in response to stroma and three-dimensional matrigel culture. Cell Growth and Differentiation, 12(12), 631–640.

    CAS  PubMed  Google Scholar 

  100. Winkenwerder, J. J., Palechek, P. L., Reece, J. S., Saarinen, M. A., Arnold, M. A., Cohen, M. B., et al. (2003). Evaluating prostate cancer cell culturing methods: a comparison of cell morphologies and metabolic activity. Oncology Reports, 10(4), 783–789.

    PubMed  Google Scholar 

  101. Baker, E. L., Bonnecaze, R. T., & Zaman, M. H. (2009). Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophysical Journal, 97(4), 1013–1021. doi:10.1016/j.bpj.2009.05.054.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Docheva, D., Padula, D., Schieker, M., & Clausen-Schaumann, H. (2010). Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells. Biochemical and Biophysical Research Communications, 402(2), 361–366. doi:10.1016/j.bbrc.2010.10.034.

    CAS  PubMed  Google Scholar 

  103. He, H., Yang, X., Davidson, A. J., Wu, D., Marshall, F. F., Chung, L. W., et al. (2010). Progressive epithelial to mesenchymal transitions in ARCaP E prostate cancer cells during xenograft tumor formation and metastasis. Prostate, 70(5), 518–528. doi:10.1002/pros.21086.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Xu, J., Wang, R., Xie, Z. H., Odero-Marah, V., Pathak, S., Multani, A., et al. (2006). Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate, 66(15), 1664–1673. doi:10.1002/pros.20488.

    CAS  PubMed  Google Scholar 

  105. Rhee, H. W., Zhau, H. E., Pathak, S., Multani, A. S., Pennanen, S., Visakorpi, T., et al. (2001). Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cell Dev Biol Anim, 37(3), 127–140. doi:10.1290/1071-2690(2001)037<0127:PPAGCO>2.0.CO;2.

    CAS  PubMed  Google Scholar 

  106. Sung, S. Y., Hsieh, C. L., Law, A., Zhau, H. E., Pathak, S., Multani, A. S., et al. (2008). Coevolution of prostate cancer and bone stroma in three-dimensional coculture: implications for cancer growth and metastasis. Cancer Research, 68(23), 9996–10003. doi:10.1158/0008-5472.CAN-08-2492.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Kaplun, A., Dzinic, S., Bernardo, M., & Sheng, S. (2012). Tumor suppressor maspin as a rheostat in HDAC regulation to achieve the fine-tuning of epithelial homeostasis. Critical Reviews in Eukaryotic Gene Expression, 22(3), 249–258.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Ruppender, N. S., Morrissey, C., Lange, P. H., & Vessella, R. L. (2013). Dormancy in solid tumors: implications for prostate cancer. Cancer and Metastasis Reviews. doi:10.1007/s10555-013-9422-z.

    PubMed  Google Scholar 

  109. Chauhan, S., & Tyagi, J. S. (2008). Interaction of DevR with multiple binding sites synergistically activates divergent transcription of narK2-Rv1738 genes in Mycobacterium tuberculosis. Journal of Bacteriology, 190(15), 5394–5403. doi:10.1128/JB.00488-08.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Vaistij, F. E., Gan, Y., Penfield, S., Gilday, A. D., Dave, A., He, Z., et al. (2013). Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. Proceedings of the National Academy of Sciences of the United States of America, 110(26), 10866–10871. doi:10.1073/pnas.1301647110.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Nadendla, S. K., Hazan, A., Ward, M., Harper, L. J., Moutasim, K., Bianchi, L. S., et al. (2011). GLI1 confers profound phenotypic changes upon LNCaP prostate cancer cells that include the acquisition of a hormone independent state. PLoS One, 6(5), e20271. doi:10.1371/journal.pone.0020271.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Shigemura, K., Huang, W. C., Li, X., Zhau, H. E., Zhu, G., Gotoh, A., et al. (2011). Active sonic hedgehog signaling between androgen independent human prostate cancer cells and normal/benign but not cancer-associated prostate stromal cells. Prostate, 71(16), 1711–1722. doi:10.1002/pros.21388.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Javelaud, D., Alexaki, V. I., Dennler, S., Mohammad, K. S., Guise, T. A., & Mauviel, A. (2011). TGF-beta/SMAD/GLI2 signaling axis in cancer progression and metastasis. Cancer Research, 71(17), 5606–5610. doi:10.1158/0008-5472.CAN-11-1194.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., et al. (2011). VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell, 20(6), 701–714. doi:10.1016/j.ccr.2011.11.002.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Shiozawa, Y., Pedersen, E. A., & Taichman, R. S. (2010). GAS6/Mer axis regulates the homing and survival of the E2A/PBX1-positive B-cell precursor acute lymphoblastic leukemia in the bone marrow niche. Experimental Hematology, 38(2), 132–140. doi:10.1016/j.exphem.2009.11.002.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Taichman, R. S., Patel, L. R., Bedenis, R., Wang, J., Weidner, S., Schumann, T., et al. (2013). GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS One, 8(4), e61873. doi:10.1371/journal.pone.0061873.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Lim, P. K., Bliss, S. A., Patel, S. A., Taborga, M., Dave, M. A., Gregory, L. A., et al. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Research, 71(5), 1550–1560. doi:10.1158/0008-5472.CAN-10-2372.

    CAS  PubMed  Google Scholar 

  118. Almog, N., Briggs, C., Beheshti, A., Ma, L., Wilkie, K. P., Rietman, E., et al. (2013). Transcriptional changes induced by the tumor dormancy-associated microRNA-190. Transcription, 4(4).

  119. Almog, N., Ma, L., Schwager, C., Brinkmann, B. G., Beheshti, A., Vajkoczy, P., et al. (2012). Consensus micro RNAs governing the switch of dormant tumors to the fast-growing angiogenic phenotype. PLoS One, 7(8), e44001. doi:10.1371/journal.pone.0044001.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Bidard, F. C., Pierga, J. Y., Vincent-Salomon, A., & Poupon, M. F. (2008). A “class action” against the microenvironment: do cancer cells cooperate in metastasis? Cancer and Metastasis Reviews, 27(1), 5–10. doi:10.1007/s10555-007-9103-x.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Pathak, S., Nemeth, M. A., Multani, A. S., Thalmann, G. N., von Eschenbach, A. C., & Chung, L. W. (1997). Can cancer cells transform normal host cells into malignant cells? British Journal of Cancer, 76(9), 1134–1138.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Liu, Q., Russell, M. R., Shahriari, K., Jernigan, D. L., Lioni, M. I., Garcia, F. U., et al. (2013). Interleukin-1beta promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Cancer Research, 73(11), 3297–3305. doi:10.1158/0008-5472.CAN-12-3970.

    CAS  PubMed  Google Scholar 

  123. Giatromanolaki, A., Koukourakis, M. I., Koutsopoulos, A., Mendrinos, S., & Sivridis, E. (2012). The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer. Cancer Biology and Therapy, 13(13), 1284–1289. doi:10.4161/cbt.21785.

    PubMed Central  PubMed  Google Scholar 

  124. Sotgia, F., Martinez-Outschoorn, U. E., Pavlides, S., Howell, A., Pestell, R. G., & Lisanti, M. P. (2011). Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Research, 13(4), 213. doi:10.1186/bcr2892.

    PubMed Central  PubMed  Google Scholar 

  125. Tumati, V., Kumar, S., Yu, L., Chen, B., Choy, H., & Saha, D. (2013). Effect of PF-02341066 and radiation on non-small cell lung cancer cells. Oncology Reports, 29(3), 1094–1100. doi:10.3892/or.2012.2198.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Pan, B. S., Chan, G. K., Chenard, M., Chi, A., Davis, L. J., Deshmukh, S. V., et al. (2010). MK-2461, a novel multitargeted kinase inhibitor, preferentially inhibits the activated c-Met receptor. Cancer Research, 70(4), 1524–1533. doi:10.1158/0008-5472.CAN-09-2541.

    CAS  PubMed  Google Scholar 

  127. Munshi, N., Jeay, S., Li, Y., Chen, C. R., France, D. S., Ashwell, M. A., et al. (2010). ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Molecular Cancer Therapeutics, 9(6), 1544–1553. doi:10.1158/1535-7163.MCT-09-1173.

    CAS  PubMed  Google Scholar 

  128. Yakes, F. M., Chen, J., Tan, J., Yamaguchi, K., Shi, Y., Yu, P., et al. (2011). Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Molecular Cancer Therapeutics, 10(12), 2298–2308. doi:10.1158/1535-7163.MCT-11-0264.

    CAS  PubMed  Google Scholar 

  129. Sen, B., Peng, S., Saigal, B., Williams, M. D., & Johnson, F. M. (2011). Distinct interactions between c-Src and c-Met in mediating resistance to c-Src inhibition in head and neck cancer. Clinical Cancer Research, 17(3), 514–524. doi:10.1158/1078-0432.CCR-10-1617.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Harvey, S. R., Porrini, M., Stachl, C., MacMillan, D., Zinzalla, G., & Barran, P. E. (2012). Small-molecule inhibition of c-MYC:MAX leucine zipper formation is revealed by ion mobility mass spectrometry. Journal of the American Chemical Society, 134(47), 19384–19392. doi:10.1021/ja306519h.

    CAS  PubMed  Google Scholar 

  131. Kim, J., Roh, M., & Abdulkadir, S. A. (2010). Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity. BMC Cancer, 10, 248. doi:10.1186/1471-2407-10-248.

    PubMed Central  PubMed  Google Scholar 

  132. Carmody, L. C., Germain, A., Morgan, B., VerPlank, L., Fernandez, C., Feng, Y., et al. (2010). Identification of a Selective Small-Molecule Inhibitor of Breast Cancer Stem Cells - Probe 2. In Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD).

  133. Park, C. Y., Son, J. Y., Jin, C. H., Nam, J. S., Kim, D. K., & Sheen, Y. Y. (2011). EW-7195, a novel inhibitor of ALK5 kinase inhibits EMT and breast cancer metastasis to lung. European Journal of Cancer, 47(17), 2642–2653. doi:10.1016/j.ejca.2011.07.007.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a NCI PO-1 grant (2P01CA098912), RO-1 grant (1R01CA122602), Board of Governor's Distinguished Cancer Chair and PCF Challenge and 2013 Steve Wynn Young Investigator Awards. We thank Mr. Gary Mawyer from the University of Virginia for editorial assistance, Dr. Ruoxiang Wang from Cedars-Sinai Medical Center for his role in providing critical reading of this manuscript and manuscript processing, and Drs. John Lu and Murali Gururajan from Cedars-Sinai Medical Center for their help in the construction of RANK-mediated signal network in PCa cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leland W. K. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, G.CY., Chung, L.W.K. RANK-mediated signaling network and cancer metastasis. Cancer Metastasis Rev 33, 497–509 (2014). https://doi.org/10.1007/s10555-013-9488-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9488-7

Keywords

Navigation