Skip to main content

Advertisement

Log in

Netrin-1 as a potential target for metastatic cancer: focus on colorectal cancer

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Despite advanced screening technology and cancer treatments available today, metastasis remains an ongoing major cause of cancer-related deaths worldwide. Typically, colorectal cancer is one of the cancers treatable by surgery in conjunction with chemotherapy when it is detected at an early stage. However, it still ranks as the second highest modality and mortality of cancer types in western countries, and this is mostly due to a recurrence of metastatic colorectal cancer post-resection of the primary malignancy. Colorectal cancer metastases predominantly occur in the liver and lung, and yet the molecular mechanisms that regulate these organ-specific colorectal cancer metastases are largely unknown. Therefore, the identification of any critical molecule, which triggers malignancy in colorectal cancer, would be an excellent target for treatment. Netrin-1 was initially discovered as a chemotropic neuronal guidance molecule, and has been marked as a regulator for many cancers including colorectal cancer. Here, we summarise key findings of the role of netrin-1 intrinsic to colorectal cancer cells, extrinsic to the tumour microenvironment and angiogenesis, and consequently, we evaluate netrin-1 as a potential target molecule for metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Spano, D., Heck, C., De Antonellis, P., Christofori, G., & Zollo, M. (2012). Molecular networks that regulate cancer metastasis. Seminars in Cancer Biology, 22(3), 234–249.

    PubMed  CAS  Google Scholar 

  2. Mendoza, M., & Khanna, C. (2009). Revisiting the seed and soil in cancer metastasis. The International Journal of Biochemistry & Cell Biology, 41(7), 1452–1462.

    CAS  Google Scholar 

  3. Brooks, S. A., Lomax-Browne, H. J., Carter, T. M., Kinch, C. E., & Hall, D. M. S. (2010). Molecular interactions in cancer cell metastasis. Acta Histochemica, 112(1), 3–25.

    PubMed  CAS  Google Scholar 

  4. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458.

    PubMed  CAS  Google Scholar 

  5. Oppenheimer, S. B. (2006). Cellular basis of cancer metastasis: a review of fundamentals and new advances. Acta Histochemica, 108(5), 327–334.

    PubMed  CAS  Google Scholar 

  6. Eccles, S. A., & Welch, D. R. (2007). Metastasis: recent discoveries and novel treatment strategies. The Lancet, 369(9574), 1742–1757.

    CAS  Google Scholar 

  7. Hart, I. R., & Fidler, I. J. (1981). The implications of tumor heterogeneity for studies on the biology and therapy of cancer metastasis. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 651(1), 37–50.

    CAS  Google Scholar 

  8. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.

    PubMed  CAS  Google Scholar 

  9. Langley, R. R., & Fidler, I. J. (2011). The seed and soil hypothesis revisited—the role of tumor–stroma interactions in metastasis to different organs. International Journal of Cancer, 128(11), 2527–2535.

    CAS  Google Scholar 

  10. Kawaguchi, T., & Nakamura, K. (1986). Analysis of the lodgement and extravasation of tumor cells in experimental models of hematogenous metastasis. Cancer Metastasis Reviews, 5(2), 77–94.

    PubMed  CAS  Google Scholar 

  11. Honn, K. V., Tang, D. G., Grossi, I., Duniec, Z. M., Timar, J., Renaud, C., et al. (1994). Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction. Cancer Research, 54(2), 565–574.

    PubMed  CAS  Google Scholar 

  12. Al-Mehdi, A. B., Tozawa, K., Fisher, A. B., Shientag, L., Lee, A., & Muschel, R. J. (2000). Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nature Medicine, 6(1), 100–102.

    PubMed  CAS  Google Scholar 

  13. Sierra, A. (2005). Metastases and their microenvironments: linking pathogenesis and therapy. Drug Resistance Updates, 8(4), 247–257.

    PubMed  CAS  Google Scholar 

  14. Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews Cancer, 3(6), 401–410.

    PubMed  CAS  Google Scholar 

  15. Dai, C. Y., Haqq, C. M., & Puzas, J. E. (2006). Molecular correlates of site-specific metastasis. Seminars in Radiation Oncology, 16(2), 102–110.

    PubMed  CAS  Google Scholar 

  16. Paget, S. (1889). The distribution of secondary growth in cancer of breast. The Lancet, 1, 571–573.

    Google Scholar 

  17. Ewing, J. (1928). Neoplastic diseases: a treatise on tumors. Philadelphia: Saunders.

    Google Scholar 

  18. Ferlay, J., Shin, H.-R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127(12), 2893–2917.

    CAS  Google Scholar 

  19. Center, M. M., Jemal, A., & Ward, E. (2009). International trends in colorectal cancer incidence rates. Cancer Epidemiology, Biomarkers & Prevention, 18(6), 1688–1694.

    Google Scholar 

  20. D'Angelica, M. (2013). Staging stage IV colorectal cancer. Annals of Surgical Oncology, 1–2.

  21. Jin, K. T. (2012). Mechanisms regulating colorectal cancer cell metastasis into liver. Oncology Letters, 3(1), 11.

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Mehlen, P., & Guenebeaud, C. (2010). Netrin-1 and its dependence receptors as original targets for cancer therapy. Current Opinion in Oncology, 22(1), 46–54.

    PubMed  CAS  Google Scholar 

  23. Mehlen, P., & Thibert, C. (2004). Dependence receptors: between life and death. Cellular and Molecular Life Sciences, 61(15), 1854–1866.

    PubMed  CAS  Google Scholar 

  24. Ferrara, N., Hillan, K. J., Gerber, H.-P., & Novotny, W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Reviews Drug Discovery, 3(5), 391–400.

    PubMed  CAS  Google Scholar 

  25. Folkman, J. (1991). Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symposia, 22, 339.

    PubMed  CAS  Google Scholar 

  26. Gullino, P. M. (1978). Angiogenesis and oncogenesis. Journal of the National Cancer Institute, 61(3), 639.

    PubMed  CAS  Google Scholar 

  27. Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews Cancer, 2(1), 38–47.

    PubMed  CAS  Google Scholar 

  28. Weis, S. M., & Cheresh, D. A. (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nature Medicine, 17(11), 1359–1370.

    PubMed  CAS  Google Scholar 

  29. Vartanian, A. A. (2012). Signaling pathways in tumor vasculogenic mimicry. Biochemistry (Moscow), 77(9), 1044–1055.

    CAS  Google Scholar 

  30. Rmali, K. A., Puntis, M. C. A., & Jiang, W. G. (2007). Tumour-associated angiogenesis in human colorectal cancer. Colorectal Disease: The Official Journal of The Association of Coloproctology of Great Britain and Ireland, 9(1), 3–14.

    CAS  Google Scholar 

  31. Ellis, L. M., Takahashi, Y., Liu, W., & Shaheen, R. M. (2000). Vascular endothelial growth factor in human colon cancer: biology and therapeutic implications. The Oncologist, 5(suppl 1), 11–15.

    PubMed  CAS  Google Scholar 

  32. Tokunaga, T., Oshika, Y., Abe, Y., Ozeki, Y., Sadahiro, S., Kijima, H., et al. (1998). Vascular endothelial growth factor (VEGF) mRNA isoform expression pattern is correlated with liver metastasis and poor prognosis in colon cancer. British Journal Of Cancer, 77(6), 998–1002.

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Vaish, V., & Sanyal, S. N. (2012). Role of sulindac and celecoxib in the regulation of angiogenesis during the early neoplasm of colon: exploring PI3-K/PTEN/Akt pathway to the canonical Wnt/β-catenin signaling. Biomedicine & Pharmacotherapy, 66(5), 354–367.

    CAS  Google Scholar 

  34. Fukuda, R., Kelly, B., & Semenza, G. L. (2003). Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Research, 63(9), 2330–2334.

    PubMed  CAS  Google Scholar 

  35. Tsujii, M., Kawano, S., Tsuji, S., Sawaoka, H., Hori, M., & DuBois, R. N. (1998). Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 93(5), 705–716.

    PubMed  CAS  Google Scholar 

  36. Taketo, M. M. (2012). Roles of stromal microenvironment in colon cancer progression. Journal of Biochemistry, 151(5), 477–481.

    PubMed  CAS  Google Scholar 

  37. Yoshida, S., Amano, H., Hayashi, I., Kitasato, H., Kamata, M., Inukai, M., et al. (2003). COX-2/VEGF-dependent facilitation of tumor-associated angiogenesis and tumor growth in vivo. Laboratory Investigation, 83(10), 1385–1394.

    PubMed  CAS  Google Scholar 

  38. Fukuda, R., Hirota, K., Fan, F., Jung, Y. D., Ellis, L. M., & Semenza, G. L. (2002). Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP Kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. Journal of Biological Chemistry, 277(41), 38205–38211.

    PubMed  CAS  Google Scholar 

  39. Subbaramaiah, K., & Dannenberg, A. J. (2003). Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends in Pharmacological Sciences, 24(2), 96–102.

    PubMed  CAS  Google Scholar 

  40. McGettigan, P. (2006). Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA, 296(13), 1633–1644.

    PubMed  CAS  Google Scholar 

  41. Tol, J., Koopman, M., Cats, A., Rodenburg, C. J., Creemers, G. J. M., Schrama, J. G., et al. (2009). Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. New England Journal of Medicine, 360(6), 563–572.

    PubMed  CAS  Google Scholar 

  42. Carlo-Stella, C., Locatelli, S. L., Giacomini, A., Cleris, L., Saba, E., Righi, M., et al. (2013). Sorafenib inhibits lymphoma xenografts by targeting MAPK/ERK and AKT pathways in tumor and vascular cells. PLoS ONE, 8(4), e61603. doi:10.1371/journal.pone.0061603.

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Guijarro-Muñoz, I., Sánchez, A., Martínez-Martínez, E., García, J., Salas, C., Provencio, M., et al. (2013). Gene expression profiling identifies EPHB4 as a potential predictive biomarker in colorectal cancer patients treated with bevacizumab. Medical Oncology, 30(2), 1–8.

    Google Scholar 

  44. Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125(23), 5591–5596.

    PubMed  CAS  Google Scholar 

  45. Huszar, M., Itzhaki, O., Leibovici, J., & Sinai, J. (2011). The tumor microenvironment: part 1. Immunotherapy, 3(11), 1367–1384.

    PubMed  Google Scholar 

  46. Bissell, M. J., Kenny, P. A., & Radisky, D. C. (2005). Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harbor Symposia on Quantitative Biology, 70, 343–356.

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Weaver, V. M., Petersen, O. W., Wang, F., Larabell, C. A., Briand, P., Damsky, C., et al. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. The Journal of Cell Biology, 137(1), 231–245.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6(1), 17–32.

    PubMed  CAS  Google Scholar 

  49. Bissell, M. J., & Radisky, D. (2001). Putting tumours in context. Nature Reviews Cancer, 1(1), 46–54.

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Rustgi, A. K. (2007). The genetics of hereditary colon cancer. Genes and Development, 21(20), 2525–2538.

    PubMed  CAS  Google Scholar 

  52. Fearon, E., Cho, K., Nigro, J., Kern, S., Simons, J., Ruppert, J., et al. (1990). Identification of a chromosome 18q gene that is altered in colorectal cancers. Science, 247(4938), 49–56.

    PubMed  CAS  Google Scholar 

  53. Kitamura, T., Kometani, K., Hashida, H., Matsunaga, A., Miyoshi, H., Hosogi, H., et al. (2007). SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genetics, 39(4), 467–475.

    PubMed  CAS  Google Scholar 

  54. Taketo, M. M. (2009). Role of bone marrow-derived cells in colon cancer: lessons from mouse model studies. Journal of Gastroenterology, 44(2), 93–102.

    PubMed  Google Scholar 

  55. Kitamura, T., Fujishita, T., Loetscher, P., Revesz, L., Hashida, H., Kizaka-Kondoh, S., et al. (2010). Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model. Proceedings of the National Academy of Sciences, 107(29), 13063–13068.

    CAS  Google Scholar 

  56. Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science (New York, N.Y.), 295(5564), 2387–2392.

    CAS  Google Scholar 

  57. Overall, C. M., & Kleifeld, O. (2006). Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nature Reviews Cancer, 6(3), 227–239.

    PubMed  CAS  Google Scholar 

  58. Peterson, J. T. (2006). The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors. Cardiovascular Research, 69(3), 677–687.

    PubMed  CAS  Google Scholar 

  59. Murphy, G., & Nagase, H. (2008). Progress in matrix metalloproteinase research. Molecular Aspects of Medicine, 29(5), 290–308.

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Masahiro, S., Masahiro, A., Haruhiko, F., Koji, A., Hisahiro, H., Yoshiharu, S., et al. (2011). Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell, 19, 125–137.

    Google Scholar 

  61. Kennedy, T. E., Serafini, T., de la Torre, J., & Tessier-Lavigne, M. (1994). Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell, 78(3), 425–435.

    PubMed  CAS  Google Scholar 

  62. Mehlen, P., & Furne, C. (2005). Netrin-1: when a neuronal guidance cue turns out to be a regulator of tumorigenesis. Cellular and Molecular Life Sciences, 62(22), 2599–2616.

    PubMed  CAS  Google Scholar 

  63. Bradford, D., Cole, S. J., & Cooper, H. M. (2009). Netrin-1: diversity in development. The International Journal of Biochemistry & Cell Biology, 41(3), 487–493.

    CAS  Google Scholar 

  64. Serafini, T., Kennedy, T. E., Gaiko, M. J., Mirzayan, C., Jessell, T. M., & Tessier-Lavigne, M. (1994). The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell, 78(3), 409–424.

    PubMed  CAS  Google Scholar 

  65. Barallobre, M. J., Pascual, M., Del Río, J. A., & Soriano, E. (2005). The Netrin family of guidance factors: emphasis on Netrin-1 signalling. Brain Research Reviews, 49(1), 22–47.

    PubMed  CAS  Google Scholar 

  66. Sun, K. L. W., Correia, J. P., & Kennedy, T. E. (2011). Netrins: versatile extracellular cues with diverse functions. Development, 138(11), 2153–2169.

    CAS  Google Scholar 

  67. Rajasekharan, S., & Kennedy, T. (2009). The netrin protein family. Genome Biology, 10(9), 239.

    PubMed Central  PubMed  Google Scholar 

  68. Ko, S. Y., Dass, C. R., & Nurgali, K. (2012). Netrin-1 in the developing enteric nervous system and colorectal cancer. Trends in Molecular Medicine, 18(9), 544–554.

    PubMed  CAS  Google Scholar 

  69. Serafini, T., Colamarino, S. A., Leonardo, E. D., Wang, H., Beddington, R., Skarnes, W. C., et al. (1996). Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell, 87(6), 1001–1014.

    PubMed  CAS  Google Scholar 

  70. Hong, K., Hinck, L., Nishiyama, M., Poo, M.-m., Tessier-Lavigne, M., & Stein, E. (1999). A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell, 97(7), 927–941.

    PubMed  CAS  Google Scholar 

  71. Alcantara, S., Ruiz, M., De Castro, F., Soriano, E., & Sotelo, C. (2000). Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development, 127(7), 1359–1372.

    PubMed  CAS  Google Scholar 

  72. Yee, K. T., Simon, H. H., Tessier-Lavigne, M., & O'Leary, D. D. M. (1999). Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron, 24(3), 607–622.

    PubMed  CAS  Google Scholar 

  73. Colamarino, S. A., & Tessier-Lavigne, M. (1995). The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell, 81(4), 621–629.

    PubMed  CAS  Google Scholar 

  74. Baker, K. A., Moore, S. W., Jarjour, A. A., & Kennedy, T. E. (2006). When a diffusible axon guidance cue stops diffusing: roles for netrins in adhesion and morphogenesis. Current Opinion in Neurobiology, 16(5), 529–534.

    PubMed  CAS  Google Scholar 

  75. Kennedy, T. E., Wang, H., Marshall, W., & Tessier-Lavigne, M. (2006). Axon guidance by diffusible chemoattractants: a gradient of netrin protein in the developing spinal cord. The Journal of Neuroscience, 26(34), 8866–8874.

    PubMed  CAS  Google Scholar 

  76. Wit, J., & Verhaagen, J. (2007). Proteoglycans as modulators of axon guidance cue function. Semaphorins: receptor and intracellular signaling mechanisms. In R. J. Pasterkamp (Ed.), Advances in experimental medicine and biology (Vol. 600) (pp. 73–89). New York: Springer.

    Google Scholar 

  77. Matsumoto, Y. (2007). Netrin-1/DCC signaling in commissural axon guidance requires cell-autonomous expression of heparan sulfate. The Journal of Neuroscience, 27(16), 4342.

    PubMed  CAS  Google Scholar 

  78. Cirulli, V., & Yebra, M. (2007). Netrins: beyond the brain. Nature Reviews Molecular Cell Biology, 8(4), 296–306.

    PubMed  CAS  Google Scholar 

  79. Wang, W., Brian Reeves, W., & Ramesh, G. (2008). Netrin-1 and kidney injury. I. Netrin-1 protects against ischemia-reperfusion injury of the kidney. American Journal of Physiology - Renal Physiology, 294(4), F739–F747.

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Liu, Y., Stein, E., Oliver, T., Li, Y., Brunken, W. J., Koch, M., et al. (2004). Novel role for netrins in regulating epithelial behavior during lung branching morphogenesis. Current Biology, 14(10), 897–905.

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Eichmann, A., Makinen, T., & Alitalo, K. (2005). Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes and Development, 19(9), 1013–1021.

    PubMed  CAS  Google Scholar 

  82. Mehlen, P., & Bredesen, D. E. (2004). The dependence receptor hypothesis. Apoptosis, 9(1), 37–49.

    PubMed  CAS  Google Scholar 

  83. Mehlen, P., & Llambi, F. (2005). Role of netrin-1 and netrin-1 dependence receptors in colorectal cancers. British Journal of Cancer, 93(1), 1–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Mazelin, L., Bernet, A., Bonod-Bidaud, C., Pays, L., Arnaud, S., Gespach, C., et al. (2004). Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature, 431(7004), 80–84.

    PubMed  CAS  Google Scholar 

  85. Dumartin, L., Quemener, C., Laklai, H., Herbert, J., Bicknell, R., Bousquet, C., et al. (2010). Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology, 138(4), 1595–1606.

    PubMed  CAS  Google Scholar 

  86. Delloye-Bourgeois, C., Brambilla, E., Coissieux, M.-M., Guenebeaud, C., Pedeux, R., Firlej, V., et al. (2009). Interference with netrin-1 and tumor cell death in non-small cell lung cancer. Journal of the National Cancer Institute, 101(4), 237–247.

    PubMed  CAS  Google Scholar 

  87. Fitamant, J., Guenebeaud, C., Coissieux, M.-M., Guix, C., Treilleux, I., Scoazec, J.-Y., et al. (2008). Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proceedings of the National Academy of Sciences, 105(12), 4850–4855.

    CAS  Google Scholar 

  88. Castets, M., Broutier, L., Molin, Y., Brevet, M., Chazot, G., Gadot, N., et al. (2012). DCC constrains tumour progression via its dependence receptor activity. Nature, 482(7386), 534–537.

    CAS  Google Scholar 

  89. Paradisi, A. (2010). Netrin-1, a missing link between chronic inflammation and tumor progression. Cell Cycle, 9(7), 1253.

    PubMed  CAS  Google Scholar 

  90. Paradisi, A., Maisse, C., Coissieux, M.-M., Gadot, N., Lépinasse, F., Delloye-Bourgeois, C., et al. (2009). Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression. Proceedings of the National Academy of Sciences, 106(40), 17146–17151.

    CAS  Google Scholar 

  91. Carmeliet, P., & Tessier-Lavigne, M. (2005). Common mechanisms of nerve and blood vessel wiring. Nature, 436(7048), 193–200.

    PubMed  CAS  Google Scholar 

  92. Lu, X., le Noble, F., Yuan, L., Jiang, Q., de Lafarge, B., Sugiyama, D., et al. (2004). The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature, 432(7014), 179–186.

    PubMed  CAS  Google Scholar 

  93. Park, K. W., Crouse, D., Lee, M., Karnik, S. K., Sorensen, L. K., Murphy, K. J., et al. (2004). The axonal attractant Netrin-1 is an angiogenic factor. Proceedings of the National Academy of Sciences of the United States of America, 101(46), 16210–16215.

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Larrivée, B., Freitas, C., Trombe, M., Lv, X., DeLafarge, B., Yuan, L., et al. (2007). Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes and Development, 21(19), 2433–2447.

    PubMed Central  PubMed  Google Scholar 

  95. Dakouane-Giudicelli, M., Alfaidy, N., Bayle, P., Tassin de Nonneville, A., Studer, V., Rozenberg, P., et al. (2011). Hypoxia-inducible factor 1 controls the expression of the uncoordinated-5-B receptor, but not of netrin-1, in first trimester human placenta. The International Journal Of Developmental Biology, 55(10–12), 981–987.

    PubMed  CAS  Google Scholar 

  96. Wilson, B. D., Ii, M., Park, K. W., Suli, A., Sorensen, L. K., Larrieu-Lahargue, F., et al. (2006). Netrins promote developmental and therapeutic angiogenesis. Science, 313(5787), 640–644.

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Castets, M., Coissieux, M.-M., Delloye-Bourgeois, C., Bernard, L., Delcros, J.-G., Bernet, A., et al. (2009). Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis. Developmental Cell, 16(4), 614–620.

    PubMed  CAS  Google Scholar 

  98. Lu, H., Wang, Y., He, X., Yuan, F., Lin, X., Xie, B., et al. (2012). Netrin-1 hyperexpression in mouse brain promotes angiogenesis and long-term neurological recovery after transient focal ischemia. Stroke, 43(3), 838–843.

    PubMed  CAS  Google Scholar 

  99. Li, Q., Yao, D., Ma, J., Zhu, J., Xu, X., Ren, Y., et al. (2011). Transplantation of MSCs in combination with netrin-1 improves neoangiogenesis in a rat model of hind limb ischemia. Journal of Surgical Research, 166(1), 162–169.

    PubMed  CAS  Google Scholar 

  100. Tsuchiya, A., Hayashi, T., Deguchi, K., Sehara, Y., Yamashita, T., Zhang, H., et al. (2007). Expression of netrin-1 and its receptors DCC and neogenin in rat brain after ischemia. Brain Research, 1159, 1–7.

    PubMed  CAS  Google Scholar 

  101. Shimizu, A., Nakayama, H., Wang, P., König, C., Akino, T., Sandlund, J., et al. (2013). Netrin-1 promotes glioblastoma cell invasiveness and angiogenesis by multiple pathways including activation of RhoA, cathepsin B, and cAMP-response element-binding protein. Journal of Biological Chemistry, 288(4), 2210–2222.

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Reviews Cancer, 3(5), 362–374.

    PubMed  CAS  Google Scholar 

  103. Friedl, P., & Bröcker, E. B. (2000). The biology of cell locomotion within three-dimensional extracellular matrix. Cellular and Molecular Life Sciences CMLS, 57(1), 41–64.

    PubMed  CAS  Google Scholar 

  104. Rodrigues, S., De Wever, O., Bruyneel, E., Rooney, R. J., & Gespach, C. (2007). Opposing roles of netrin-1 and the dependence receptor DCC in cancer cell invasion, tumor growth and metastasis. Oncogene, 26(38), 5615–5625.

    PubMed  CAS  Google Scholar 

  105. Nguyen, Q.-D., De Wever, O., Bruyneel, E., Hendrix, A., Xie, W.-Z., Lombet, A., et al. (2005). Commutators of PAR-1 signaling in cancer cell invasion reveal an essential role of the Rho-Rho kinase axis and tumor microenvironment. Oncogene, 24(56), 8240–8251.

    PubMed  CAS  Google Scholar 

  106. Forcet, C., Ye, X., Granger, L., Corset, V., Shin, H., Bredesen, D. E., et al. (2001). The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. Proceedings of the National Academy of Sciences, 98(6), 3416–3421.

    CAS  Google Scholar 

  107. Arakawa, H. (2004). Netrin-1 and its receptors in tumorigenesis. Nature Review Cancer, 4(12), 978–987.

    CAS  Google Scholar 

  108. Paradisi, A., Maisse, C., Bernet, A., Coissieux, M. M., Maccarrone, M., Scoazec, J. Y., et al. (2008). NF-κB regulates netrin-1 expression and affects the conditional tumor suppressive activity of the netrin-1 receptors. Gastroenterology, 135(4), 1248–1257.

    PubMed  CAS  Google Scholar 

  109. Yang, Y., Wang, X., Moore, D. R., Lightfoot, S. A., & Huycke, M. M. (2012). TNF-α mediates macrophage-induced bystander effects through Netrin-1. Cancer Research, 72(20), 5219–5229.

    PubMed Central  PubMed  CAS  Google Scholar 

  110. Ramesh, G., Berg, A., & Jayakumar, C. (2011). Plasma netrin-1 is a diagnostic biomarker of human cancers. Biomarkers, 16(2), 172–180.

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Son, T. W., Yun, S. P., Yong, M. S., Seo, B. N., Ryu, J. M., Youn, H. Y., et al. (2013). Netrin-1 protects hypoxia-induced mitochondrial apoptosis through HSP27 expression via DCC- and integrin α6β4-dependent Akt, GSK-3β, and HSF-1 in mesenchymal stem cells. Cell Death and Disease, 4, e563. doi:10.1038/cddis.2013.94.

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8(9), 726–736.

    PubMed  CAS  Google Scholar 

  113. Pandey, P., Farber, R., Nakazawa, A., Kumar, S., Bharti, A., Nalin, C., et al. (2000). Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene, 19(16), 1975–1981.

    PubMed  CAS  Google Scholar 

  114. Dorsam, R. T., & Gutkind, J. S. (2007). G-protein-coupled receptors and cancer. Nature Reviews Cancer, 7(2), 79–94.

    PubMed  CAS  Google Scholar 

  115. George Paul, A., Sharma-Walia, N., Kerur, N., White, C., & Chandran, B. (2010). Piracy of prostaglandin E2/EP receptor-mediated signaling by Kaposi's sarcoma-associated herpes virus (HHV-8) for latency gene expression: strategy of a successful pathogen. Cancer Research, 70(9), 3697–3708.

    PubMed  Google Scholar 

  116. Xie, H., Zou, L., Zhu, J., & Yang, Y. (2011). Effects of netrin-1 and netrin-1 knockdown on human umbilical vein endothelial cells and angiogenesis of rat placenta. Placenta, 32(8), 546–553.

    PubMed  CAS  Google Scholar 

  117. Wang, Q. H., Zhu, J. W., Zou, L., & Yang, Y. (2011). Role of axonal guidance factor netrin-1 in human placental vascular growth. Journal of Huazhong University of Science and Technology-Medical Sciences, 31(2), 246–250.

    Google Scholar 

  118. Bouvrée, K., Larrivée, B., Lv, X., Yuan, L., DeLafarge, B., Freitas, C., et al. (2008). Netrin-1 inhibits sprouting angiogenesis in developing avian embryos. Developmental Biology, 318(1), 172–183.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Curtin Academic50 grant support to CRD. The authors would also like to acknowledge the support provided by the Faculty of Health, Engineering and Science Postgraduate Research Scholarship at Victoria University to SYK.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crispin R. Dass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, S.Y., Blatch, G.L. & Dass, C.R. Netrin-1 as a potential target for metastatic cancer: focus on colorectal cancer. Cancer Metastasis Rev 33, 101–113 (2014). https://doi.org/10.1007/s10555-013-9459-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9459-z

Keywords

Navigation