Skip to main content

Advertisement

Log in

Central and peripheral nervous systems: master controllers in cancer metastasis

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hynes, R. O. (2003). Metastatic potential: generic predisposition of the primary tumor or rare, metastatic variants-or both? Cell, 113(7), 821–823.

    PubMed  CAS  Google Scholar 

  2. Nguyen, D. X., & Massague, J. (2007). Genetic determinants of cancer metastasis. Nature Reviews Genetics, 8(5), 341–352.

    PubMed  CAS  Google Scholar 

  3. Ramaswamy, S., Ross, K. N., Lander, E. S., & Golub, T. R. (2003). A molecular signature of metastasis in primary solid tumors. Nature Genetics, 33(1), 49–54.

    PubMed  CAS  Google Scholar 

  4. Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322.

    PubMed  CAS  Google Scholar 

  5. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.

    PubMed  CAS  Google Scholar 

  6. Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252.

    PubMed  CAS  Google Scholar 

  7. Simon, R. H., Lovett, E. J., 3rd, Tomaszek, D., & Lundy, J. (1980). Electrical stimulation of the midbrain mediates metastatic tumor growth. Science, 209(4461), 1132–1133.

    PubMed  CAS  Google Scholar 

  8. Giraldi, T., Perissin, L., Zorzet, S., Rapozzi, V., & Rodani, M. G. (1994). Metastasis and neuroendocrine system in stressed mice. International Journal of Neuroscience, 74(1–4), 265–278.

    PubMed  CAS  Google Scholar 

  9. Sarkar, D. K., Zhang, C., Murugan, S., Dokur, M., Boyadjieva, N. I., Ortiguela, M., et al. (2011). Transplantation of beta-endorphin neurons into the hypothalamus promotes immune function and restricts the growth and metastasis of mammary carcinoma. Cancer Research, 71(19), 6282–6291.

    PubMed  CAS  Google Scholar 

  10. Sloan, E. K., Priceman, S. J., Cox, B. F., Yu, S., Pimentel, M. A., Tangkanangnukul, V., et al. (2010). The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Research, 70(18), 7042–7052.

    PubMed  CAS  Google Scholar 

  11. Hermes, G. L., Delgado, B., Tretiakova, M., Cavigelli, S. A., Krausz, T., Conzen, S. D., et al. (2009). Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22393–22398.

    PubMed  CAS  Google Scholar 

  12. Chida, Y., Hamer, M., Wardle, J., & Steptoe, A. (2008). Do stress-related psychosocial factors contribute to cancer incidence and survival? Nature Clinical Practice Oncology, 5(8), 466–475.

    PubMed  Google Scholar 

  13. Bultz, B. D., & Carlson, L. E. (2005). Emotional distress: the sixth vital sign in cancer care. Journal of Clinical Oncology, 23(26), 6440–6441.

    PubMed  Google Scholar 

  14. Waller, A., Groff, S. L., Hagen, N., Bultz, B. D., & Carlson, L. E. (2012). Characterizing distress, the 6th vital sign, in an oncology pain clinic. Current Oncology, 19(2), e53–59.

    PubMed  CAS  Google Scholar 

  15. Hsu, P. P., & Sabatini, D. M. (2008). Cancer cell metabolism: Warburg and beyond. Cell, 134(5), 703–707.

    PubMed  CAS  Google Scholar 

  16. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.

    PubMed  CAS  Google Scholar 

  17. Levine, A. J., & Puzio-Kuter, A. M. (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330(6009), 1340–1344.

    PubMed  CAS  Google Scholar 

  18. Xu, R. H., Pelicano, H., Zhou, Y., Carew, J. S., Feng, L., Bhalla, K. N., et al. (2005). Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Research, 65(2), 613–621.

    PubMed  CAS  Google Scholar 

  19. Pelicano, H., Martin, D. S., Xu, R. H., & Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene, 25(34), 4633–4646.

    PubMed  CAS  Google Scholar 

  20. Dang, C. V. (2012). Links between metabolism and cancer. Genes & Development, 26(9), 877–890.

    CAS  Google Scholar 

  21. Hara, M. R., Kovacs, J. J., Whalen, E. J., Rajagopal, S., Strachan, R. T., Grant, W., et al. (2011). A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature, 477(7364), 349–353.

    PubMed  CAS  Google Scholar 

  22. Hara, M. R., Sachs, B. D., Caron, M. G., & Lefkowitz, R. J. (2013). Pharmacological blockade of a beta(2)AR-beta-arrestin-1 signaling cascade prevents the accumulation of DNA damage in a behavioral stress model. Cell Cycle, 12(2), 219–224.

    PubMed  CAS  Google Scholar 

  23. Vousden, K. H., & Ryan, K. M. (2009). p53 and metabolism. Nature Reviews. Cancer, 9(10), 691–700.

    PubMed  CAS  Google Scholar 

  24. Park, S. Y., Kang, J. H., Jeong, K. J., Lee, J., Han, J. W., Choi, W. S., et al. (2011). Norepinephrine induces VEGF expression and angiogenesis by a hypoxia-inducible factor-1alpha protein-dependent mechanism. International Journal of Cancer, 128(10), 2306–2316.

    CAS  Google Scholar 

  25. Denko, N. C. (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews. Cancer, 8(9), 705–713.

    PubMed  CAS  Google Scholar 

  26. Gerhart-Hines, Z., Dominy, J. E., Jr., Blattler, S. M., Jedrychowski, M. P., Banks, A. S., Lim, J. H., et al. (2011). The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Molecular Cell, 44(6), 851–863.

    PubMed  CAS  Google Scholar 

  27. Brooks, C. L., & Gu, W. (2009). How does SIRT1 affect metabolism, senescence and cancer? Nature Reviews. Cancer, 9(2), 123–128.

    PubMed  CAS  Google Scholar 

  28. Gnaiger, E., Mendez, G., & Hand, S. C. (2000). High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11080–11085.

    PubMed  CAS  Google Scholar 

  29. Heerlein, K., Schulze, A., Hotz, L., Bartsch, P., & Mairbaurl, H. (2005). Hypoxia decreases cellular ATP demand and inhibits mitochondrial respiration of a549 cells. American Journal of Respiratory Cell and Molecular Biology, 32(1), 44–51.

    PubMed  CAS  Google Scholar 

  30. Puka-Sundvall, M., Wallin, C., Gilland, E., Hallin, U., Wang, X., Sandberg, M., et al. (2000). Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury. Brain Research. Developmental Brain Research, 125(1–2), 43–50.

    PubMed  CAS  Google Scholar 

  31. Keith, B., Johnson, R. S., & Simon, M. C. (2012). HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nature Reviews. Cancer, 12(1), 9–22.

    CAS  Google Scholar 

  32. Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604–4613.

    PubMed  CAS  Google Scholar 

  33. Raval, R. R., Lau, K. W., Tran, M. G., Sowter, H. M., Mandriota, S. J., Li, J. L., et al. (2005). Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel–Lindau-associated renal cell carcinoma. Molecular and Cellular Biology, 25(13), 5675–5686.

    PubMed  CAS  Google Scholar 

  34. Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3(10), 721–732.

    PubMed  CAS  Google Scholar 

  35. Guillaumond, F., Leca, J., Olivares, O., Lavaut, M. N., Vidal, N., Berthezene, P., et al. (2013). Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3919–3924.

    PubMed  CAS  Google Scholar 

  36. Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.

    PubMed  Google Scholar 

  37. Kim, J. W., Gao, P., & Dang, C. V. (2007). Effects of hypoxia on tumor metabolism. Cancer Metastasis Reviews, 26(2), 291–298.

    PubMed  Google Scholar 

  38. Nonogaki, K. (2000). New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia, 43(5), 533–549.

    PubMed  CAS  Google Scholar 

  39. Rodgers, J. T., Lerin, C., Gerhart-Hines, Z., & Puigserver, P. (2008). Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Letters, 582(1), 46–53.

    PubMed  CAS  Google Scholar 

  40. Wright, P. A., Perry, S. F., & Moon, T. W. (1989). Regulation of hepatic gluconeogenesis and glycogenolysis by catecholamines in rainbow trout during environmental hypoxia. Journal of Experimental Biology, 147, 169–188.

    PubMed  CAS  Google Scholar 

  41. Bartness, T. J., Shrestha, Y. B., Vaughan, C. H., Schwartz, G. J., & Song, C. K. (2010). Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Molecular and Cellular Endocrinology, 318(1–2), 34–43.

    PubMed  CAS  Google Scholar 

  42. Hu, H. T., Ma, Q. Y., Zhang, D., Shen, S. G., Han, L., Ma, Y. D., et al. (2010). HIF-1alpha links beta-adrenoceptor agonists and pancreatic cancer cells under normoxic condition. Acta Pharmacologica Sinica, 31(1), 102–110.

    PubMed  CAS  Google Scholar 

  43. Shi, M., Liu, D., Duan, H., Qian, L., Wang, L., Niu, L., et al. (2011). The beta2-adrenergic receptor and Her2 comprise a positive feedback loop in human breast cancer cells. Breast Cancer Research and Treatment, 125(2), 351–362.

    PubMed  CAS  Google Scholar 

  44. Al-Wadei, M. H., Al-Wadei, H. A., & Schuller, H. M. (2012). Pancreatic cancer cells and normal pancreatic duct epithelial cells express an autocrine catecholamine loop that is activated by nicotinic acetylcholine receptors alpha3, alpha5, and alpha7. Molecular Cancer Research, 10(2), 239–249.

    PubMed  CAS  Google Scholar 

  45. Canto, C., & Auwerx, J. (2009). Caloric restriction, SIRT1 and longevity. Trends in Endocrinology and Metabolism, 20(7), 325–331.

    PubMed  CAS  Google Scholar 

  46. Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C., & Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular Biology of the Cell, 16(10), 4623–4635.

    PubMed  CAS  Google Scholar 

  47. Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., et al. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 429(6993), 771–776.

    PubMed  CAS  Google Scholar 

  48. Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., & Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029), 113–118.

    PubMed  CAS  Google Scholar 

  49. Kersten, S., Desvergne, B., & Wahli, W. (2000). Roles of PPARs in health and disease. Nature, 405(6785), 421–424.

    PubMed  CAS  Google Scholar 

  50. Lefebvre, P., Chinetti, G., Fruchart, J. C., & Staels, B. (2006). Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. The Journal of Clinical Investigation, 116(3), 571–580.

    PubMed  CAS  Google Scholar 

  51. Evans, R. M., Barish, G. D., & Wang, Y. X. (2004). PPARs and the complex journey to obesity. Nature Medicine, 10(4), 355–361.

    PubMed  CAS  Google Scholar 

  52. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127(6), 1109–1122.

    PubMed  CAS  Google Scholar 

  53. Lin, J., Handschin, C., & Spiegelman, B. M. (2005). Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabolism, 1(6), 361–370.

    PubMed  Google Scholar 

  54. Gerhart-Hines, Z., Rodgers, J. T., Bare, O., Lerin, C., Kim, S. H., Mostoslavsky, R., et al. (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO Journal, 26(7), 1913–1923.

    PubMed  CAS  Google Scholar 

  55. Schwer, B., & Verdin, E. (2008). Conserved metabolic regulatory functions of sirtuins. Cell Metabolism, 7(2), 104–112.

    PubMed  CAS  Google Scholar 

  56. Chalkiadaki, A., & Guarente, L. (2012). Sirtuins mediate mammalian metabolic responses to nutrient availability. Nature Reviews. Endocrinology, 8(5), 287–296.

    PubMed  CAS  Google Scholar 

  57. Nin, V., Escande, C., Chini, C. C., Giri, S., Camacho-Pereira, J., Matalonga, J., et al. (2012). Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase. Journal of Biological Chemistry, 287(28), 23489–23501.

    PubMed  CAS  Google Scholar 

  58. Chao, L. C., & Tontonoz, P. (2012). SIRT1 regulation-it ain’t all NAD. Molecular Cell, 45(1), 9–11.

    PubMed  CAS  Google Scholar 

  59. Canto, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., et al. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 458(7241), 1056–1060.

    PubMed  CAS  Google Scholar 

  60. Zhang, B. B., Zhou, G., & Li, C. (2009). AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metabolism, 9(5), 407–416.

    PubMed  Google Scholar 

  61. Antoni, M. H., Lutgendorf, S. K., Cole, S. W., Dhabhar, F. S., Sephton, S. E., McDonald, P. G., et al. (2006). The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nature Reviews. Cancer, 6(3), 240–248.

    PubMed  CAS  Google Scholar 

  62. Thaker, P. H., Han, L. Y., Kamat, A. A., Arevalo, J. M., Takahashi, R., Lu, C., et al. (2006). Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nature Medicine, 12(8), 939–944.

    PubMed  CAS  Google Scholar 

  63. Shi, M., Liu, D., Duan, H., Han, C., Wei, B., Qian, L., et al. (2010). Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer. Molecular Cancer, 9, 269.

    PubMed  Google Scholar 

  64. Yang, E. V., Sood, A. K., Chen, M., Li, Y., Eubank, T. D., Marsh, C. B., et al. (2006). Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Research, 66(21), 10357–10364.

    PubMed  CAS  Google Scholar 

  65. Chakroborty, D., Sarkar, C., Basu, B., Dasgupta, P. S., & Basu, S. (2009). Catecholamines regulate tumor angiogenesis. Cancer Research, 69(9), 3727–3730.

    PubMed  CAS  Google Scholar 

  66. Landen, C. N., Jr., Lin, Y. G., Armaiz Pena, G. N., Das, P. D., Arevalo, J. M., Kamat, A. A., et al. (2007). Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Research, 67(21), 10389–10396.

    PubMed  CAS  Google Scholar 

  67. Shahzad, M. M., Arevalo, J. M., Armaiz-Pena, G. N., Lu, C., Stone, R. L., Moreno-Smith, M., et al. (2010). Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. Journal of Biological Chemistry, 285(46), 35462–35470.

    PubMed  CAS  Google Scholar 

  68. Yang, E. V., Kim, S. J., Donovan, E. L., Chen, M., Gross, A. C., Webster Marketon, J. I., et al. (2009). Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain, Behavior, and Immunity, 23(2), 267–275.

    PubMed  CAS  Google Scholar 

  69. Wolf, J. M., Rohleder, N., Bierhaus, A., Nawroth, P. P., & Kirschbaum, C. (2009). Determinants of the NF-kappaB response to acute psychosocial stress in humans. Brain, Behavior, and Immunity, 23(6), 742–749.

    PubMed  CAS  Google Scholar 

  70. Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39–51.

    PubMed  CAS  Google Scholar 

  71. Mantovani, A., Schioppa, T., Porta, C., Allavena, P., & Sica, A. (2006). Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Reviews, 25(3), 315–322.

    PubMed  Google Scholar 

  72. Entschladen, F., Drell, T. L. T., Lang, K., Joseph, J., & Zaenker, K. S. (2004). Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters. The Lancet Oncology, 5(4), 254–258.

    PubMed  CAS  Google Scholar 

  73. Ruff, M., Schiffmann, E., Terranova, V., & Pert, C. B. (1985). Neuropeptides are chemoattractants for human tumor cells and monocytes: a possible mechanism for metastasis. Clinical Immunology and Immunopathology, 37(3), 387–396.

    PubMed  CAS  Google Scholar 

  74. Barron, T. I., Sharp, L., & Visvanathan, K. (2012). Beta-adrenergic blocking drugs in breast cancer: a perspective review. Ther Adv Med Oncol, 4(3), 113–125.

    PubMed  CAS  Google Scholar 

  75. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867.

    PubMed  CAS  Google Scholar 

  76. Lutgendorf, S. K., Lamkin, D. M., Jennings, N. B., Arevalo, J. M., Penedo, F., DeGeest, K., et al. (2008). Biobehavioral influences on matrix metalloproteinase expression in ovarian carcinoma. Clinical Cancer Research, 14(21), 6839–6846.

    PubMed  CAS  Google Scholar 

  77. Moreno-Smith, M., Lutgendorf, S. K., & Sood, A. K. (2010). Impact of stress on cancer metastasis. Future Oncology, 6(12), 1863–1881.

    PubMed  Google Scholar 

  78. Vazquez, S. M., Pignataro, O., & Luthy, I. A. (1999). Alpha2-adrenergic effect on human breast cancer MCF-7 cells. Breast Cancer Research and Treatment, 55(1), 41–49.

    PubMed  CAS  Google Scholar 

  79. Huang, H. H., Brennan, T. C., Muir, M. M., & Mason, R. S. (2009). Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. Journal of Cellular Physiology, 220(1), 267–275.

    PubMed  CAS  Google Scholar 

  80. Bruzzone, A., Pinero, C. P., Rojas, P., Romanato, M., Gass, H., Lanari, C., et al. (2011). alpha(2)-Adrenoceptors enhance cell proliferation and mammary tumor growth acting through both the stroma and the tumor cells. Current Cancer Drug Targets, 11(6), 763–774.

    PubMed  CAS  Google Scholar 

  81. Cao, L., Liu, X., Lin, E. J., Wang, C., Choi, E. Y., Riban, V., et al. (2010). Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell, 142(1), 52–64.

    PubMed  CAS  Google Scholar 

  82. Irwin, M. R., & Cole, S. W. (2011). Reciprocal regulation of the neural and innate immune systems. Nature Reviews Immunology, 11(9), 625–632.

    PubMed  CAS  Google Scholar 

  83. Glaser, R., & Kiecolt-Glaser, J. K. (2005). Stress-induced immune dysfunction: implications for health. Nature Reviews Immunology, 5(3), 243–251.

    PubMed  CAS  Google Scholar 

  84. Padgett, D. A., & Glaser, R. (2003). How stress influences the immune response. Trends in Immunology, 24(8), 444–448.

    PubMed  CAS  Google Scholar 

  85. Stewart, J., Meaney, M. J., Aitken, D., Jensen, L., & Kalant, N. (1988). The effects of acute and life-long food restriction on basal and stress-induced serum corticosterone levels in young and aged rats. Endocrinology, 123(4), 1934–1941.

    PubMed  CAS  Google Scholar 

  86. Padgett, D. A., Marucha, P. T., & Sheridan, J. F. (1998). Restraint stress slows cutaneous wound healing in mice. Brain, Behavior, and Immunity, 12(1), 64–73.

    PubMed  CAS  Google Scholar 

  87. Elenkov, I. J. (2004). Glucocorticoids and the Th1/Th2 balance. Annals of the New York Academy of Sciences, 1024, 138–146.

    PubMed  CAS  Google Scholar 

  88. Liu, B., Li, Z., Mahesh, S. P., Pantanelli, S., Hwang, F. S., Siu, W. O., et al. (2008). Glucocorticoid-induced tumor necrosis factor receptor negatively regulates activation of human primary natural killer (NK) cells by blocking proliferative signals and increasing NK cell apoptosis. Journal of Biological Chemistry, 283(13), 8202–8210.

    PubMed  CAS  Google Scholar 

  89. Sephton, S. E., Sapolsky, R. M., Kraemer, H. C., & Spiegel, D. (2000). Diurnal cortisol rhythm as a predictor of breast cancer survival. Journal of the National Cancer Institute, 92(12), 994–1000.

    PubMed  CAS  Google Scholar 

  90. Abercrombie, H. C., Giese-Davis, J., Sephton, S., Epel, E. S., Turner-Cobb, J. M., & Spiegel, D. (2004). Flattened cortisol rhythms in metastatic breast cancer patients. Psychoneuroendocrinology, 29(8), 1082–1092.

    PubMed  CAS  Google Scholar 

  91. Irwin, M., Daniels, M., Risch, S. C., Bloom, E., & Weiner, H. (1988). Plasma cortisol and natural killer cell activity during bereavement. Biological Psychiatry, 24(2), 173–178.

    PubMed  CAS  Google Scholar 

  92. Irwin, M., Daniels, M., Smith, T. L., Bloom, E., & Weiner, H. (1987). Impaired natural killer cell activity during bereavement. Brain, Behavior, and Immunity, 1(1), 98–104.

    PubMed  CAS  Google Scholar 

  93. Elenkov, I. J., Chrousos, G. P., & Wilder, R. L. (2000). Neuroendocrine regulation of IL-12 and TNF-alpha/IL-10 balance. Clinical implications. Annals of the New York Academy of Sciences, 917, 94–105.

    PubMed  CAS  Google Scholar 

  94. Franchimont, D., Galon, J., Gadina, M., Visconti, R., Zhou, Y., Aringer, M., et al. (2000). Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. Journal of Immunology, 164(4), 1768–1774.

    CAS  Google Scholar 

  95. Blotta, M. H., DeKruyff, R. H., & Umetsu, D. T. (1997). Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. Journal of Immunology, 158(12), 5589–5595.

    CAS  Google Scholar 

  96. Auphan, N., DiDonato, J. A., Rosette, C., Helmberg, A., & Karin, M. (1995). Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science, 270(5234), 286–290.

    PubMed  CAS  Google Scholar 

  97. Scheinman, R. I., Cogswell, P. C., Lofquist, A. K., & Baldwin, A. S., Jr. (1995). Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science, 270(5234), 283–286.

    PubMed  CAS  Google Scholar 

  98. Ray, A., & Prefontaine, K. E. (1994). Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 91(2), 752–756.

    PubMed  CAS  Google Scholar 

  99. Franchimont, D. (2004). Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Annals of the New York Academy of Sciences, 1024, 124–137.

    PubMed  CAS  Google Scholar 

  100. Swanson, M. A., Lee, W. T., & Sanders, V. M. (2001). IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine. Journal of Immunology, 166(1), 232–240.

    CAS  Google Scholar 

  101. Elenkov, I. J., Papanicolaou, D. A., Wilder, R. L., & Chrousos, G. P. (1996). Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications. Proceedings of the Association of American Physicians, 108(5), 374–381.

    PubMed  CAS  Google Scholar 

  102. Stevenson, J. R., Westermann, J., Liebmann, P. M., Hortner, M., Rinner, I., Felsner, P., et al. (2001). Prolonged alpha-adrenergic stimulation causes changes in leukocyte distribution and lymphocyte apoptosis in the rat. Journal of Neuroimmunology, 120(1–2), 50–57.

    PubMed  CAS  Google Scholar 

  103. Jiang, J. L., Peng, Y. P., Qiu, Y. H., & Wang, J. J. (2007). Effect of endogenous catecholamines on apoptosis of Con A-activated lymphocytes of rats. Journal of Neuroimmunology, 192(1–2), 79–88.

    PubMed  CAS  Google Scholar 

  104. Elenkov, I. J., & Chrousos, G. P. (2002). Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Annals of the New York Academy of Sciences, 966, 290–303.

    PubMed  CAS  Google Scholar 

  105. Schedlowski, M., Falk, A., Rohne, A., Wagner, T. O., Jacobs, R., Tewes, U., et al. (1993). Catecholamines induce alterations of distribution and activity of human natural killer (NK) cells. Journal of Clinical Immunology, 13(5), 344–351.

    PubMed  CAS  Google Scholar 

  106. Crary, B., Hauser, S. L., Borysenko, M., Kutz, I., Hoban, C., Ault, K. A., et al. (1983). Epinephrine-induced changes in the distribution of lymphocyte subsets in peripheral blood of humans. Journal of Immunology, 131(3), 1178–1181.

    CAS  Google Scholar 

  107. Kalinichenko, V. V., Mokyr, M. B., Graf, L. H., Jr., Cohen, R. L., & Chambers, D. A. (1999). Norepinephrine-mediated inhibition of antitumor cytotoxic T lymphocyte generation involves a beta-adrenergic receptor mechanism and decreased TNF-alpha gene expression. Journal of Immunology, 163(5), 2492–2499.

    CAS  Google Scholar 

  108. Straub, R. H., Mayer, M., Kreutz, M., Leeb, S., Scholmerich, J., & Falk, W. (2000). Neurotransmitters of the sympathetic nerve terminal are powerful chemoattractants for monocytes. Journal of Leukocyte Biology, 67(4), 553–558.

    PubMed  CAS  Google Scholar 

  109. Neves, S. R., Ram, P. T., & Iyengar, R. (2002). G protein pathways. Science, 296(5573), 1636–1639.

    PubMed  CAS  Google Scholar 

  110. Audet, M., & Bouvier, M. (2012). Restructuring G-protein-coupled receptor activation. Cell, 151(1), 14–23.

    PubMed  CAS  Google Scholar 

  111. Lutgendorf, S. K., Sood, A. K., & Antoni, M. H. (2010). Host factors and cancer progression: biobehavioral signaling pathways and interventions. Journal of Clinical Oncology, 28(26), 4094–4099.

    PubMed  CAS  Google Scholar 

  112. Cole, S. W., & Sood, A. K. (2012). Molecular pathways: beta-adrenergic signaling in cancer. Clinical Cancer Research, 18(5), 1201–1206.

    PubMed  CAS  Google Scholar 

  113. Hassan, S., Karpova, Y., Baiz, D., Yancey, D., Pullikuth, A., Flores, A., et al. (2013). Behavioral stress accelerates prostate cancer development in mice. J Clin Invest, 123(2), 874–886.

    PubMed  CAS  Google Scholar 

  114. Armaiz-Pena, G. N., Allen, J. K., Cruz, A., Stone, R. L., Nick, A. M., Lin, Y. G., et al. (2013). Src activation by beta-adrenoreceptors is a key switch for tumour metastasis. Nature Communications, 4, 1403.

    PubMed  Google Scholar 

  115. Sethi, N., & Kang, Y. (2011). Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nature Reviews. Cancer, 11(10), 735–748.

    PubMed  CAS  Google Scholar 

  116. Rangarajan, S., Enserink, J. M., Kuiperij, H. B., de Rooij, J., Price, L. S., Schwede, F., et al. (2003). Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor. The Journal of Cell Biology, 160(4), 487–493.

    PubMed  CAS  Google Scholar 

  117. Fukuhara, S., Sakurai, A., Sano, H., Yamagishi, A., Somekawa, S., Takakura, N., et al. (2005). Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Molecular and Cellular Biology, 25(1), 136–146.

    PubMed  CAS  Google Scholar 

  118. Enserink, J. M., Price, L. S., Methi, T., Mahic, M., Sonnenberg, A., Bos, J. L., et al. (2004). The cAMP-Epac-Rap1 pathway regulates cell spreading and cell adhesion to laminin-5 through the alpha3beta1 integrin but not the alpha6beta4 integrin. Journal of Biological Chemistry, 279(43), 44889–44896.

    PubMed  CAS  Google Scholar 

  119. Ma, X., Zhao, Y., Daaka, Y., & Nie, Z. (2012). Acute activation of beta2-adrenergic receptor regulates focal adhesions through betaArrestin2- and p115RhoGEF protein-mediated activation of RhoA. Journal of Biological Chemistry, 287(23), 18925–18936.

    PubMed  CAS  Google Scholar 

  120. Pham, H., Chen, M., Takahashi, H., King, J., Reber, H. A., Hines, O. J., et al. (2012). Apigenin inhibits NNK-induced focal adhesion kinase activation in pancreatic cancer cells. Pancreas, 41(8), 1306–1315.

    PubMed  CAS  Google Scholar 

  121. Masur, K., Niggemann, B., Zanker, K. S., & Entschladen, F. (2001). Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Research, 61(7), 2866–2869.

    PubMed  CAS  Google Scholar 

  122. Lang, K., Drell, T. L. T., Lindecke, A., Niggemann, B., Kaltschmidt, C., Zaenker, K. S., et al. (2004). Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. International Journal of Cancer, 112(2), 231–238.

    CAS  Google Scholar 

  123. Drell, T. L. T., Joseph, J., Lang, K., Niggemann, B., Zaenker, K. S., & Entschladen, F. (2003). Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Research and Treatment, 80(1), 63–70.

    PubMed  CAS  Google Scholar 

  124. Boulay, G., Malaquin, N., Loison, I., Foveau, B., Van Rechem, C., Rood, B. R., et al. (2012). Loss of hypermethylated in cancer 1 (HIC1) in breast cancer cells contributes to stress-induced migration and invasion through beta-2 adrenergic receptor (ADRB2) misregulation. Journal of Biological Chemistry, 287(8), 5379–5389.

    PubMed  CAS  Google Scholar 

  125. Sood, A. K., Bhatty, R., Kamat, A. A., Landen, C. N., Han, L., Thaker, P. H., et al. (2006). Stress hormone-mediated invasion of ovarian cancer cells. Clinical Cancer Research, 12(2), 369–375.

    PubMed  CAS  Google Scholar 

  126. Palm, D., Lang, K., Niggemann, B., Drell, T. L. T., Masur, K., Zaenker, K. S., et al. (2006). The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. International Journal of Cancer, 118(11), 2744–2749.

    CAS  Google Scholar 

  127. Taddei, M. L., Giannoni, E., Fiaschi, T., & Chiarugi, P. (2012). Anoikis: an emerging hallmark in health and diseases. The Journal of Pathology, 226(2), 380–393.

    PubMed  CAS  Google Scholar 

  128. Keledjian, K., & Kyprianou, N. (2003). Anoikis induction by quinazoline based alpha 1-adrenoceptor antagonists in prostate cancer cells: antagonistic effect of bcl-2. Journal of Urology, 169(3), 1150–1156.

    PubMed  CAS  Google Scholar 

  129. Johansson, M. (2011). Lord of the rings: a promising novel treatment for renal cell carcinoma? European Urology, 59(5), 745–746.

    PubMed  Google Scholar 

  130. Sakamoto, S., Schwarze, S., & Kyprianou, N. (2011). Anoikis disruption of focal adhesion-Akt signaling impairs renal cell carcinoma. European Urology, 59(5), 734–744.

    PubMed  CAS  Google Scholar 

  131. Alberti, C. (2007). Apoptosis induction by quinazoline-derived alpha1-blockers in prostate cancer cells: biomolecular implications and clinical relevance. European Review for Medical and Pharmacological Sciences, 11(1), 59–64.

    PubMed  CAS  Google Scholar 

  132. Benning, C. M., & Kyprianou, N. (2002). Quinazoline-derived alpha1-adrenoceptor antagonists induce prostate cancer cell apoptosis via an alpha1-adrenoceptor-independent action. Cancer Research, 62(2), 597–602.

    PubMed  CAS  Google Scholar 

  133. Sood, A. K., Armaiz-Pena, G. N., Halder, J., Nick, A. M., Stone, R. L., Hu, W., et al. (2010). Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. The Journal of Clinical Investigation, 120(5), 1515–1523.

    PubMed  CAS  Google Scholar 

  134. Sastry, K. S., Karpova, Y., Prokopovich, S., Smith, A. J., Essau, B., Gersappe, A., et al. (2007). Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. Journal of Biological Chemistry, 282(19), 14094–14100.

    PubMed  CAS  Google Scholar 

  135. Strell, C., Niggemann, B., Voss, M. J., Powe, D. G., Zanker, K. S., & Entschladen, F. (2012). Norepinephrine promotes the beta1-integrin-mediated adhesion of MDA-MB-231 cells to vascular endothelium by the induction of a GROalpha release. Molecular Cancer Research, 10(2), 197–207.

    PubMed  CAS  Google Scholar 

  136. Bernot, D., Peiretti, F., Canault, M., Juhan-Vague, I., & Nalbone, G. (2005). Upregulation of TNF-alpha-induced ICAM-1 surface expression by adenylate cyclase-dependent pathway in human endothelial cells. Journal of Cellular Physiology, 202(2), 434–441.

    PubMed  CAS  Google Scholar 

  137. Pozgajova, M., Sachs, U. J., Hein, L., & Nieswandt, B. (2006). Reduced thrombus stability in mice lacking the alpha2A-adrenergic receptor. Blood, 108(2), 510–514.

    PubMed  CAS  Google Scholar 

  138. Abecassis, J., Millon-Collard, R., Klein-Soyer, C., Nicora, F., Fricker, J. P., Beretz, A., et al. (1987). Adhesion of human breast cancer cell line MCF-7 to human vascular endothelial cells in culture. Enhancement by activated platelets. International Journal of Cancer, 40(4), 525–531.

    CAS  Google Scholar 

  139. Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the "soil": the premetastatic niche. Cancer Research, 66(23), 11089–11093.

    PubMed  CAS  Google Scholar 

  140. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458.

    PubMed  CAS  Google Scholar 

  141. Sloan, E. K., Capitanio, J. P., Tarara, R. P., Mendoza, S. P., Mason, W. A., & Cole, S. W. (2007). Social stress enhances sympathetic innervation of primate lymph nodes: mechanisms and implications for viral pathogenesis. Journal of Neuroscience, 27(33), 8857–8865.

    PubMed  CAS  Google Scholar 

  142. Tang, Y., Shankar, R., Gamelli, R., & Jones, S. (1999). Dynamic norepinephrine alterations in bone marrow: evidence of functional innervation. Journal of Neuroimmunology, 96(2), 182–189.

    PubMed  CAS  Google Scholar 

  143. Elefteriou, F. (2005). Neuronal signaling and the regulation of bone remodeling. Cellular and Molecular Life Sciences, 62(19–20), 2339–2349.

    PubMed  CAS  Google Scholar 

  144. Takeda, S., Elefteriou, F., Levasseur, R., Liu, X., Zhao, L., Parker, K. L., et al. (2002). Leptin regulates bone formation via the sympathetic nervous system. Cell, 111(3), 305–317.

    PubMed  CAS  Google Scholar 

  145. Campbell, J. P., Karolak, M. R., Ma, Y., Perrien, D. S., Masood-Campbell, S. K., Penner, N. L., et al. (2012). Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biology, 10(7), e1001363.

    PubMed  CAS  Google Scholar 

  146. Epstein, R. J. (2004). The CXCL12-CXCR4 chemotactic pathway as a target of adjuvant breast cancer therapies. Nature Reviews. Cancer, 4(11), 901–909.

    PubMed  CAS  Google Scholar 

  147. Roussos, E. T., Condeelis, J. S., & Patsialou, A. (2011). Chemotaxis in cancer. Nature Reviews. Cancer, 11(8), 573–587.

    PubMed  CAS  Google Scholar 

  148. Subik, K., Shu, L., Wu, C., Liang, Q., Hicks, D., Boyce, B., et al. (2012). The ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis. Bone, 50(4), 813–823.

    PubMed  CAS  Google Scholar 

  149. Katayama, Y., Battista, M., Kao, W. M., Hidalgo, A., Peired, A. J., Thomas, S. A., et al. (2006). Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 124(2), 407–421.

    PubMed  CAS  Google Scholar 

  150. Dar, A., Schajnovitz, A., Lapid, K., Kalinkovich, A., Itkin, T., Ludin, A., et al. (2011). Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia, 25(8), 1286–1296.

    PubMed  CAS  Google Scholar 

  151. Mendez-Ferrer, S., Battista, M., & Frenette, P. S. (2010). Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Annals of the New York Academy of Sciences, 1192, 139–144.

    PubMed  CAS  Google Scholar 

  152. Rozniecki, J. J., Sahagian, G. G., Kempuraj, D., Tao, K., Jocobson, S., Zhang, B., et al. (2010). Brain metastases of mouse mammary adenocarcinoma is increased by acute stress. Brain Research, 1366, 204–210.

    PubMed  CAS  Google Scholar 

  153. Theoharides, T. C., Rozniecki, J. J., Sahagian, G., Jocobson, S., Kempuraj, D., Conti, P., et al. (2008). Impact of stress and mast cells on brain metastases. Journal of Neuroimmunology, 205(1–2), 1–7.

    PubMed  CAS  Google Scholar 

  154. Li, N., Grivennikov, S. I., & Karin, M. (2011). The unholy trinity: inflammation, cytokines, and STAT3 shape the cancer microenvironment. Cancer Cell, 19(4), 429–431.

    PubMed  CAS  Google Scholar 

  155. Deng, J., Liu, Y., Lee, H., Herrmann, A., Zhang, W., Zhang, C., et al. (2012). S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell, 21(5), 642–654.

    PubMed  CAS  Google Scholar 

  156. Lutgendorf, S. K., De Geest, K., Bender, D., Ahmed, A., Goodheart, M. J., Dahmoush, L., et al. (2012). Social influences on clinical outcomes of patients with ovarian cancer. Journal of Clinical Oncology, 30(23), 2885–2890.

    PubMed  Google Scholar 

  157. Andersen, B. L., Yang, H. C., Farrar, W. B., Golden-Kreutz, D. M., Emery, C. F., Thornton, L. M., et al. (2008). Psychologic intervention improves survival for breast cancer patients: a randomized clinical trial. Cancer, 113(12), 3450–3458.

    PubMed  Google Scholar 

  158. Lengacher, C. A., Johnson-Mallard, V., Post-White, J., Moscoso, M. S., Jacobsen, P. B., Klein, T. W., et al. (2009). Randomized controlled trial of mindfulness-based stress reduction (MBSR) for survivors of breast cancer. Psycho-Oncology, 18(12), 1261–1272.

    PubMed  Google Scholar 

  159. Hoffman, C. J., Ersser, S. J., Hopkinson, J. B., Nicholls, P. G., Harrington, J. E., & Thomas, P. W. (2012). Effectiveness of mindfulness-based stress reduction in mood, breast- and endocrine-related quality of life, and well-being in stage 0 to III breast cancer: a randomized, controlled trial. Journal of Clinical Oncology, 30(12), 1335–1342.

    PubMed  Google Scholar 

  160. Coyne, J. C., & Tennen, H. (2010). Positive psychology in cancer care: bad science, exaggerated claims, and unproven medicine. Annals of Behavioral Medicine, 39(1), 16–26.

    PubMed  Google Scholar 

  161. Stefanek, M. E., Palmer, S. C., Thombs, B. D., & Coyne, J. C. (2009). Finding what is not there: unwarranted claims of an effect of psychosocial intervention on recurrence and survival. Cancer, 115(24), 5612–5616.

    PubMed  Google Scholar 

  162. Dantzer, R., Konsman, J. P., Bluthe, R. M., & Kelley, K. W. (2000). Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Autonomic Neuroscience, 85(1–3), 60–65.

    PubMed  CAS  Google Scholar 

  163. de Vries, H. E., Blom-Roosemalen, M. C., van Oosten, M., de Boer, A. G., van Berkel, T. J., Breimer, D. D., et al. (1996). The influence of cytokines on the integrity of the blood–brain barrier in vitro. Journal of Neuroimmunology, 64(1), 37–43.

    PubMed  Google Scholar 

  164. Huber, J. D., Egleton, R. D., & Davis, T. P. (2001). Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends in Neurosciences, 24(12), 719–725.

    PubMed  CAS  Google Scholar 

  165. Theoharides, T. C., & Konstantinidou, A. D. (2007). Corticotropin-releasing hormone and the blood–brain-barrier. Frontiers in Bioscience, 12, 1615–1628.

    PubMed  CAS  Google Scholar 

  166. Banks, W. A., Kastin, A. J., & Broadwell, R. D. (1995). Passage of cytokines across the blood–brain barrier. Neuroimmunomodulation, 2(4), 241–248.

    PubMed  CAS  Google Scholar 

  167. Ek, M., Kurosawa, M., Lundeberg, T., & Ericsson, A. (1998). Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. Journal of Neuroscience, 18(22), 9471–9479.

    PubMed  CAS  Google Scholar 

  168. Dantzer, R. (2006). Cytokine, sickness behavior, and depression. Neurologic Clinics, 24(3), 441–460.

    PubMed  Google Scholar 

  169. Sukoff Rizzo, S. J., Neal, S. J., Hughes, Z. A., Beyna, M., Rosenzweig-Lipson, S., Moss, S. J., et al. (2012). Evidence for sustained elevation of IL-6 in the CNS as a key contributor of depressive-like phenotypes. Transl Psychiatry, 2, e199.

    PubMed  CAS  Google Scholar 

  170. Kaster, M. P., Gadotti, V. M., Calixto, J. B., Santos, A. R., & Rodrigues, A. L. (2012). Depressive-like behavior induced by tumor necrosis factor-alpha in mice. Neuropharmacology, 62(1), 419–426.

    PubMed  CAS  Google Scholar 

  171. Pechnick, R. N., Chesnokova, V. M., Kariagina, A., Price, S., Bresee, C. J., & Poland, R. E. (2004). Reduced immobility in the forced swim test in mice with a targeted deletion of the leukemia inhibitory factor (LIF) gene. Neuropsychopharmacology, 29(4), 770–776.

    PubMed  CAS  Google Scholar 

  172. Lamkin, D. M., Lutgendorf, S. K., Lubaroff, D., Sood, A. K., Beltz, T. G., & Johnson, A. K. (2011). Cancer induces inflammation and depressive-like behavior in the mouse: modulation by social housing. Brain, Behavior, and Immunity, 25(3), 555–564.

    PubMed  CAS  Google Scholar 

  173. Pyter, L. M., Pineros, V., Galang, J. A., McClintock, M. K., & Prendergast, B. J. (2009). Peripheral tumors induce depressive-like behaviors and cytokine production and alter hypothalamic-pituitary-adrenal axis regulation. Proceedings of the National Academy of Sciences of the United States of America, 106(22), 9069–9074.

    PubMed  CAS  Google Scholar 

  174. Musselman, D. L., Miller, A. H., Porter, M. R., Manatunga, A., Gao, F., Penna, S., et al. (2001). Higher than normal plasma interleukin-6 concentrations in cancer patients with depression: preliminary findings. The American Journal of Psychiatry, 158(8), 1252–1257.

    PubMed  CAS  Google Scholar 

  175. Lutgendorf, S. K., Weinrib, A. Z., Penedo, F., Russell, D., DeGeest, K., Costanzo, E. S., et al. (2008). Interleukin-6, cortisol, and depressive symptoms in ovarian cancer patients. Journal of Clinical Oncology, 26(29), 4820–4827.

    PubMed  CAS  Google Scholar 

  176. Costanzo, E. S., Lutgendorf, S. K., Sood, A. K., Anderson, B., Sorosky, J., & Lubaroff, D. M. (2005). Psychosocial factors and interleukin-6 among women with advanced ovarian cancer. Cancer, 104(2), 305–313.

    PubMed  Google Scholar 

  177. Gola, H., Engler, H., Sommershof, A., Adenauer, H., Kolassa, S., Schedlowski, M., et al. (2013). Posttraumatic stress disorder is associated with an enhanced spontaneous production of pro-inflammatory cytokines by peripheral blood mononuclear cells. BMC Psychiatry, 13, 40.

    PubMed  CAS  Google Scholar 

  178. Sutherland, A. G., Alexander, D. A., & Hutchison, J. D. (2003). Disturbance of pro-inflammatory cytokines in post-traumatic psychopathology. Cytokine, 24(5), 219–225.

    PubMed  CAS  Google Scholar 

  179. Garcia-Oscos, F., Salgado, H., Hall, S., Thomas, F., Farmer, G. E., Bermeo, J., et al. (2012). The stress-induced cytokine interleukin-6 decreases the inhibition/excitation ratio in the rat temporal cortex via trans-signaling. Biological Psychiatry, 71(7), 574–582.

    PubMed  CAS  Google Scholar 

  180. Nilsson, M. B., Armaiz-Pena, G., Takahashi, R., Lin, Y. G., Trevino, J., Li, Y., et al. (2007). Stress hormones regulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism. Journal of Biological Chemistry, 282(41), 29919–29926.

    PubMed  CAS  Google Scholar 

  181. Lutgendorf, S. K., DeGeest, K., Dahmoush, L., Farley, D., Penedo, F., Bender, D., et al. (2011). Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients. Brain, Behavior, and Immunity, 25(2), 250–255.

    PubMed  CAS  Google Scholar 

  182. Lutgendorf, S. K., DeGeest, K., Sung, C. Y., Arevalo, J. M., Penedo, F., Lucci, J., 3rd, et al. (2009). Depression, social support, and beta-adrenergic transcription control in human ovarian cancer. Brain, Behavior, and Immunity, 23(2), 176–183.

    PubMed  CAS  Google Scholar 

  183. Nguyen, K. D., Qiu, Y., Cui, X., Goh, Y. P., Mwangi, J., David, T., et al. (2011). Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature, 480(7375), 104–108.

    PubMed  CAS  Google Scholar 

  184. Flierl, M. A., Rittirsch, D., Nadeau, B. A., Chen, A. J., Sarma, J. V., Zetoune, F. S., et al. (2007). Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature, 449(7163), 721–725.

    PubMed  CAS  Google Scholar 

  185. Weil-Malherbe, H., & Bone, A. D. (1954). Blood platelets as carriers of adrenaline and noradrenaline. Nature, 174(4429), 557–558.

    PubMed  CAS  Google Scholar 

  186. Basu, S., Nagy, J. A., Pal, S., Vasile, E., Eckelhoefer, I. A., Bliss, V. S., et al. (2001). The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nature Medicine, 7(5), 569–574.

    PubMed  CAS  Google Scholar 

  187. Chakroborty, D., Sarkar, C., Mitra, R. B., Banerjee, S., Dasgupta, P. S., & Basu, S. (2004). Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clinical Cancer Research, 10(13), 4349–4356.

    PubMed  CAS  Google Scholar 

  188. Moreno-Smith, M., Lu, C., Shahzad, M. M., Pena, G. N., Allen, J. K., Stone, R. L., et al. (2011). Dopamine blocks stress-mediated ovarian carcinoma growth. Clinical Cancer Research, 17(11), 3649–3659.

    PubMed  CAS  Google Scholar 

  189. Basu, S., Sarkar, C., Chakroborty, D., Nagy, J., Mitra, R. B., Dasgupta, P. S., et al. (2004). Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Research, 64(16), 5551–5555.

    PubMed  CAS  Google Scholar 

  190. Sarkar, C., Chakroborty, D., Chowdhury, U. R., Dasgupta, P. S., & Basu, S. (2008). Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clinical Cancer Research, 14(8), 2502–2510.

    PubMed  CAS  Google Scholar 

  191. Chakroborty, D., Sarkar, C., Yu, H., Wang, J., Liu, Z., Dasgupta, P. S., et al. (2011). Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20730–20735.

    PubMed  CAS  Google Scholar 

  192. Seeman, P., & Lee, T. (1975). Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science, 188(4194), 1217–1219.

    PubMed  CAS  Google Scholar 

  193. Amson, R., Pece, S., Lespagnol, A., Vyas, R., Mazzarol, G., Tosoni, D., et al. (2012). Reciprocal repression between P53 and TCTP. Nature Medicine, 18(1), 91–99.

    CAS  Google Scholar 

  194. Kang, S., Dong, S. M., Kim, B. R., Park, M. S., Trink, B., Byun, H. J., et al. (2012). Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis, 17(9), 989–997.

    PubMed  CAS  Google Scholar 

  195. Sachlos, E., Risueno, R. M., Laronde, S., Shapovalova, Z., Lee, J. H., Russell, J., et al. (2012). Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell, 149(6), 1284–1297.

    PubMed  CAS  Google Scholar 

  196. Liu, K., & Ding, S. (2012). Target practice: modeling tumors with stem cells. Cell, 149(6), 1185–1187.

    PubMed  CAS  Google Scholar 

  197. Burgess, D. J. (2012). Stem cells. Antipsychotic to anticancer agent. Nature Reviews. Cancer, 12(7), 452–453.

    PubMed  CAS  Google Scholar 

  198. Burgess, D. J. (2012). Anticancer drugs: antipsychotic to anticancer agent? Nature Reviews. Drug Discovery, 11(7), 516.

    PubMed  Google Scholar 

  199. Bilkei-Gorzo, A., & Zimmer, A. (2005). Mutagenesis and knockout models: NK1 and substance P. Handbook of Experimental Pharmacology, 169, 143–162.

    PubMed  CAS  Google Scholar 

  200. Esteban, F., Munoz, M., Gonzalez-Moles, M. A., & Rosso, M. (2006). A role for substance P in cancer promotion and progression: a mechanism to counteract intracellular death signals following oncogene activation or DNA damage. Cancer Metastasis Reviews, 25(1), 137–145.

    PubMed  CAS  Google Scholar 

  201. Rosso, M., Munoz, M., & Berger, M. (2012). The role of neurokinin-1 receptor in the microenvironment of inflammation and cancer. ScientificWorldJournal, 2012, 381434.

    PubMed  Google Scholar 

  202. Rao, G., Patel, P. S., Idler, S. P., Maloof, P., Gascon, P., Potian, J. A., et al. (2004). Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow: a model of early cancer progression. Cancer Research, 64(8), 2874–2881.

    PubMed  CAS  Google Scholar 

  203. Singh, D., Joshi, D. D., Hameed, M., Qian, J., Gascon, P., Maloof, P. B., et al. (2000). Increased expression of preprotachykinin-I and neurokinin receptors in human breast cancer cells: implications for bone marrow metastasis. Proceedings of the National Academy of Sciences of the United States of America, 97(1), 388–393.

    PubMed  CAS  Google Scholar 

  204. Castro, T. A., Cohen, M. C., & Rameshwar, P. (2005). The expression of neurokinin-1 and preprotachykinin-1 in breast cancer cells depends on the relative degree of invasive and metastatic potential. Clinical & Experimental Metastasis, 22(8), 621–628.

    CAS  Google Scholar 

  205. Li, X., Ma, G., Ma, Q., Li, W., Liu, J., Han, L., et al. (2013). Neurotransmitter substance P mediates pancreatic cancer perineural invasion via NK-1R in cancer cells. Molecular Cancer Research, 11(3), 294–302.

    PubMed  CAS  Google Scholar 

  206. Munoz, M., Martinez-Armesto, J., & Covenas, R. (2012). NK-1 receptor antagonists as antitumor drugs: a survey of the literature from 2000 to 2011. Expert Opinion on Therapeutic Patents, 22(7), 735–746.

    PubMed  CAS  Google Scholar 

  207. Munoz, M., & Covenas, R. (2012). NK-1 receptor antagonists: a new generation of anticancer drugs. Mini Reviews in Medicinal Chemistry, 12(7), 593–599.

    PubMed  CAS  Google Scholar 

  208. Munoz, M., Rosso, M., & Covenas, R. (2011). The NK-1 receptor: a new target in cancer therapy. Current Drug Targets, 12(6), 909–921.

    PubMed  CAS  Google Scholar 

  209. Pedrazzini, T., Pralong, F., & Grouzmann, E. (2003). Neuropeptide Y: the universal soldier. Cellular and Molecular Life Sciences, 60(2), 350–377.

    PubMed  CAS  Google Scholar 

  210. Kuo, L. E., Kitlinska, J. B., Tilan, J. U., Li, L., Baker, S. B., Johnson, M. D., et al. (2007). Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nature Medicine, 13(7), 803–811.

    PubMed  CAS  Google Scholar 

  211. Kitlinska, J. (2007). Neuropeptide Y in neural crest-derived tumors: effect on growth and vascularization. Cancer Letters, 245(1–2), 293–302.

    PubMed  CAS  Google Scholar 

  212. Gilaberte, Y., Roca, M. J., Garcia-Prats, M. D., Coscojuela, C., Arbues, M. D., & Vera-Alvarez, J. J. (2012). Neuropeptide Y expression in cutaneous melanoma. Journal of the American Academy of Dermatology, 66(6), e201–208.

    PubMed  CAS  Google Scholar 

  213. Korner, M., & Reubi, J. C. (2007). NPY receptors in human cancer: a review of current knowledge. Peptides, 28(2), 419–425.

    PubMed  Google Scholar 

  214. Kitlinska, J., Abe, K., Kuo, L., Pons, J., Yu, M., Li, L., et al. (2005). Differential effects of neuropeptide Y on the growth and vascularization of neural crest-derived tumors. Cancer Research, 65(5), 1719–1728.

    PubMed  CAS  Google Scholar 

  215. Reubi, J. C., Gugger, M., Waser, B., & Schaer, J. C. (2001). Y(1)-mediated effect of neuropeptide Y in cancer: breast carcinomas as targets. Cancer Research, 61(11), 4636–4641.

    PubMed  CAS  Google Scholar 

  216. Korner, M., Waser, B., & Reubi, J. C. (2004). Neuropeptide Y receptor expression in human primary ovarian neoplasms. Laboratory Investigation, 84(1), 71–80.

    PubMed  Google Scholar 

  217. Sheriff, S., Ali, M., Yahya, A., Haider, K. H., Balasubramaniam, A., & Amlal, H. (2010). Neuropeptide Y Y5 receptor promotes cell growth through extracellular signal-regulated kinase signaling and cyclic AMP inhibition in a human breast cancer cell line. Molecular Cancer Research, 8(4), 604–614.

    PubMed  CAS  Google Scholar 

  218. Medeiros, P. J., Al-Khazraji, B. K., Novielli, N. M., Postovit, L. M., Chambers, A. F., & Jackson, D. N. (2012). Neuropeptide Y stimulates proliferation and migration in the 4T1 breast cancer cell line. International Journal of Cancer, 131(2), 276–286.

    CAS  Google Scholar 

  219. Singer, K., Morris, D. L., Oatmen, K. E., Wang, T., Delproposto, J., Mergian, T., et al. (2013). Neuropeptide y is produced by adipose tissue macrophages and regulates obesity-induced inflammation. PLoS One, 8(3), e57929.

    PubMed  CAS  Google Scholar 

  220. Kuo, L. E., Czarnecka, M., Kitlinska, J. B., Tilan, J. U., Kvetnansky, R., & Zukowska, Z. (2008). Chronic stress, combined with a high-fat/high-sugar diet, shifts sympathetic signaling toward neuropeptide Y and leads to obesity and the metabolic syndrome. Annals of the New York Academy of Sciences, 1148, 232–237.

    PubMed  Google Scholar 

  221. Han, R., Kitlinska, J. B., Munday, W. R., Gallicano, G. I., & Zukowska, Z. (2012). Stress hormone epinephrine enhances adipogenesis in murine embryonic stem cells by up-regulating the neuropeptide Y system. PLoS One, 7(5), e36609.

    PubMed  CAS  Google Scholar 

  222. Park, E. J., Lee, J. H., Yu, G. Y., He, G., Ali, S. R., Holzer, R. G., et al. (2010). Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell, 140(2), 197–208.

    PubMed  CAS  Google Scholar 

  223. Khandekar, M. J., Cohen, P., & Spiegelman, B. M. (2011). Molecular mechanisms of cancer development in obesity. Nature Reviews. Cancer, 11(12), 886–895.

    PubMed  CAS  Google Scholar 

  224. Calle, E. E., & Kaaks, R. (2004). Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nature Reviews. Cancer, 4(8), 579–591.

    PubMed  CAS  Google Scholar 

  225. Saavedra, J. M., & Benicky, J. (2007). Brain and peripheral angiotensin II play a major role in stress. Stress, 10(2), 185–193.

    PubMed  CAS  Google Scholar 

  226. Yang, G., Wan, Y., & Zhu, Y. (1996). Angiotensin II—an important stress hormone. Biological Signals, 5(1), 1–8.

    PubMed  CAS  Google Scholar 

  227. Yang, G., Xi, Z. X., Wan, Y., Wang, H., & Bi, G. (1993). Changes in circulating and tissue angiotensin II during acute and chronic stress. Biological Signals, 2(3), 166–172.

    PubMed  CAS  Google Scholar 

  228. George, A. J., Thomas, W. G., & Hannan, R. D. (2010). The renin-angiotensin system and cancer: old dog, new tricks. Nature Reviews. Cancer, 10(11), 745–759.

    PubMed  CAS  Google Scholar 

  229. Rodrigues-Ferreira, S., Abdelkarim, M., Dillenburg-Pilla, P., Luissint, A. C., di-Tommaso, A., Deshayes, F., et al. (2012). Angiotensin II facilitates breast cancer cell migration and metastasis. PLoS One, 7(4), e35667.

    PubMed  CAS  Google Scholar 

  230. Chen, X., Meng, Q., Zhao, Y., Liu, M., Li, D., Yang, Y., et al. (2013). Angiotensin II type 1 receptor antagonists inhibit cell proliferation and angiogenesis in breast cancer. Cancer Letters, 328(2), 318–324.

    PubMed  CAS  Google Scholar 

  231. Napoleone, E., Cutrone, A., Cugino, D., Amore, C., Di Santo, A., Iacoviello, L., et al. (2012). Inhibition of the renin–angiotensin system downregulates tissue factor and vascular endothelial growth factor in human breast carcinoma cells. Thrombosis Research, 129(6), 736–742.

    PubMed  CAS  Google Scholar 

  232. Keizman, D., Huang, P., Eisenberger, M. A., Pili, R., Kim, J. J., Antonarakis, E. S., et al. (2011). Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal cell carcinoma: a retrospective examination. European Journal of Cancer, 47(13), 1955–1961.

    PubMed  CAS  Google Scholar 

  233. Amano, H., Ito, Y., Ogawa, F., Eshima, K., Suzuki, T., Oba, K., et al. (2013). Angiotensin II type 1A receptor signaling facilitates tumor metastasis formation through P-selectin-mediated interaction of tumor cells with platelets and endothelial cells. American Journal of Pathology, 182(2), 553–564.

    PubMed  CAS  Google Scholar 

  234. Okamoto, K., Tajima, H., Nakanuma, S., Sakai, S., Makino, I., Kinoshita, J., et al. (2012). Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma. International Journal of Oncology, 41(2), 573–582.

    PubMed  CAS  Google Scholar 

  235. Okamoto, K., Tajima, H., Ohta, T., Nakanuma, S., Hayashi, H., Nakagawara, H., et al. (2010). Angiotensin II induces tumor progression and fibrosis in intrahepatic cholangiocarcinoma through an interaction with hepatic stellate cells. International Journal of Oncology, 37(5), 1251–1259.

    PubMed  CAS  Google Scholar 

  236. Cortez-Retamozo, V., Etzrodt, M., Newton, A., Ryan, R., Pucci, F., Sio, S. W., et al. (2013). Angiotensin II drives the production of tumor-promoting macrophages. Immunity, 38(2), 296–308.

    PubMed  CAS  Google Scholar 

  237. Gabrilovich, D. I., Ostrand-Rosenberg, S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 12(4), 253–268.

    PubMed  CAS  Google Scholar 

  238. Gabrilovich, D. I. (2013). Applying pressure on macrophages. Immunity, 38(2), 205–206.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China (973 program, no. 2010CB911904), National Natural Science Foundation of China (no. 30901766 and 30972690 and 30800582), and Beijing Natural Science Foundation (no. 7122124 and 7132163).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Shi or Ning Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, M., Liu, D., Yang, Z. et al. Central and peripheral nervous systems: master controllers in cancer metastasis. Cancer Metastasis Rev 32, 603–621 (2013). https://doi.org/10.1007/s10555-013-9440-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9440-x

Keywords

Navigation