Skip to main content

Advertisement

Log in

Bone marrow microenvironment in cancer patients: immunological aspects and clinical implications

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The bone marrow (BM) of cancer patients is considered an essential secondary lymphoid organ with substantial impact on tumor cell dissemination and tumor–immune responses. Recent advances in the understanding of BM/primary tumor crosstalk, homing processes, premetastatic niche formation, tumor cell dormancy, and ultimately, identification of the BM micromilieu cytokines, chemokines, and growth factors may provide the basis for the development of targeted therapeutic strategies potentially rendering primary cancers and cancer bone metastases more susceptible to chemotherapy. The present review aims to dissect the individual components of the BM microenvironment in cancer patients, compare it to the healthy BM, and discuss its impact on interactions between the tumor and the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Osmond, D. G. (1994). Production and selection of B lymphocytes in bone marrow: Lymphostromal interactions and apoptosis in normal, mutant and transgenic mice. Advances in Experimental Medicine and Biology, 355, 15–20.

    Article  PubMed  CAS  Google Scholar 

  2. Feuerer, M., Beckhove, P., Garbi, N., Mahnke, Y., Limmer, A., Hommel, M., et al. (2003). Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nature Medicine, 9(9), 1151–1157.

    Article  PubMed  CAS  Google Scholar 

  3. Schirrmacher, V., Feuerer, M., Fournier, P., Ahlert, T., Umansky, V., & Beckhove, P. (2003). T-cell priming in bone marrow: The potential for long-lasting protective anti-tumor immunity. Trends in Molecular Medicine, 9(12), 526–534.

    Article  PubMed  CAS  Google Scholar 

  4. Mazo, I. B., Honczarenko, M., Leung, H., Cavanagh, L. L., Bonasio, R., Weninger, W., et al. (2005). Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity, 22(2), 259–270.

    Article  PubMed  CAS  Google Scholar 

  5. Feuerer, M., Beckhove, P., Mahnke, Y., Hommel, M., Kyewski, B., Hamann, A., et al. (2004). Bone marrow microenvironment facilitating dendritic cell:CD4 T cell interactions and maintenance of CD4 memory. International Journal of Oncology, 25(4), 867–876.

    PubMed  Google Scholar 

  6. Khazaie, K., Prifti, S., Beckhove, P., Griesbach, A., Russell, S., Collins, M., et al. (1994). Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proceedings of the National Academy of Sciences of the United States of America, 91(16), 7430–7434.

    Article  PubMed  CAS  Google Scholar 

  7. Schirrmacher, V., Feuerer, M., Beckhove, P., Ahlert, T., & Umansky, V. (2002). T cell memory, anergy and immunotherapy in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 7(2), 201–208.

    Article  PubMed  Google Scholar 

  8. Müller, M., Gounari, F., Prifti, S., Hacker, H. J., Schirrmacher, V., & Khazaie, K. (1998). EblacZ tumor dormancy in bone marrow and lymph nodes: Active control of proliferating tumor cells by CD8+ immune T cells. Cancer Research, 58(23), 5439–5446.

    PubMed  Google Scholar 

  9. Beckhove, P., Feuerer, M., Dolenc, M., Schuetz, F., Choi, C., Sommerfeldt, N., et al. (2004). Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. The Journal of Clinical Investigation, 114(1), 67–76.

    PubMed  CAS  Google Scholar 

  10. Choi, C., Witzens, M., Bucur, M., Feuerer, M., Sommerfeldt, N., Trojan, A., et al. (2005). Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of patients with multiple myeloma. Blood, 105(5), 2132–2134.

    Article  PubMed  CAS  Google Scholar 

  11. Feuerer, M., Beckhove, P., Bai, L., Solomayer, E. F., Bastert, G., Diel, I. J., et al. (2001). Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nature Medicine, 7(4), 452–458.

    Article  PubMed  CAS  Google Scholar 

  12. Nagorsen, D., Scheibenbogen, C., Marincola, F. M., Letsch, A., & Keilholz, U. (2003). Natural T cell immunity against cancer. Clinical Cancer Research, 9(12), 4296–4303.

    PubMed  CAS  Google Scholar 

  13. Domschke, C., Schuetz, F., Ge, Y., Seibel, T., Falk, C., Brors, B., et al. (2009). Intratumoral cytokines and tumor cell biology determine spontaneous breast cancer-specific immune responses and their correlation to prognosis. Cancer Research, 69(21), 8420–8428.

    Article  PubMed  CAS  Google Scholar 

  14. Murao, A., Oka, Y., Tsuboi, A., Elisseeva, O. A., Tanaka-Harada, Y., Fujiki, F., et al. (2010). High frequencies of less differentiated and more proliferative WT1-specific CD8+ T cells in bone marrow in tumor-bearing patients: An important role of bone marrow as a secondary lymphoid organ. Cancer Science, 101(4), 848–854.

    Article  PubMed  CAS  Google Scholar 

  15. Melenhorst, J. J., Scheinberg, P., Chattopadhyay, P. K., Gostick, E., Ladell, K., Roederer, M., et al. (2009). High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood, 113(10), 2238–2244.

    Article  PubMed  CAS  Google Scholar 

  16. Schuetz, F., Ehlert, K., Ge, Y., Schneeweiss, A., Rom, J., Inzkirweli, N., et al. (2009). Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: A pilot clinical study. Cancer Immunology, Immunotherapy, 58(6), 887–900.

    Article  PubMed  Google Scholar 

  17. Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., et al. (2004). Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118(2), 149–161.

    Article  PubMed  CAS  Google Scholar 

  18. Mercier, F. E., Ragu, C., & Scadden, D. T. (2012). The bone marrow at the crossroads of blood and immunity. Nature Reviews. Immunology, 12(1), 49–60.

    Article  CAS  Google Scholar 

  19. Di Rosa, F., & Pabst, R. (2005). The bone marrow: A nest for migratory memory T cells. Trends in Immunology, 26(7), 360–366.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao, E., Xu, H., Wang, L., Kryczek, I., Wu, K., Hu, Y., et al. (2012). Bone marrow and the control of immunity. Cellular & Molecular Immunology, 9(1), 11–19.

    Article  CAS  Google Scholar 

  21. Zou, L., Barnett, B., Safah, H., Larussa, V. F., Evdemon-Hogan, M., Mottram, P., et al. (2004). Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Research, 64(22), 8451–8455.

    Article  PubMed  CAS  Google Scholar 

  22. Ostanin, A. A., Petrovskii, Y. L., Shevela, E. Y., & Chernykh, E. R. (2011). Multiplex analysis of cytokines, chemokines, growth factors, MMP-9 and TIMP-1 produced by human bone marrow, adipose tissue, and placental mesenchymal stromal cells. Bulletin of Experimental Biology and Medicine, 151(1), 133–141.

    Article  PubMed  CAS  Google Scholar 

  23. Omatsu, Y., Sugiyama, T., Kohara, H., Kondoh, G., Fujii, N., Kohno, K., et al. (2010). The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity, 33(3), 387–399.

    Article  PubMed  CAS  Google Scholar 

  24. Tokoyoda, K., Hauser, A. E., Nakayama, T., & Radbruch, A. (2010). Organization of immunological memory by bone marrow stroma. Nature Reviews. Immunology, 10(3), 193–200.

    Article  PubMed  CAS  Google Scholar 

  25. Sugiyama, T., Kohara, H., Noda, M., & Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25(6), 977–988.

    Article  PubMed  CAS  Google Scholar 

  26. Cassese, G., Arce, S., Hauser, A. E., Lehnert, K., Moewes, B., Mostarac, M., et al. (2003). Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. Journal of Immunology, 171(4), 1684–1690.

    CAS  Google Scholar 

  27. Peschon, J. J., Morrissey, P. J., Grabstein, K. H., Ramsdell, F. J., Maraskovsky, E., Gliniak, B. C., et al. (1994). Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. The Journal of Experimental Medicine, 180(5), 1955–1960.

    Article  PubMed  CAS  Google Scholar 

  28. Tokoyoda, K., Zehentmeier, S., Hegazy, A. N., Albrecht, I., Grün, J. R., Löhning, M., et al. (2009). Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity, 30(5), 721–730.

    Article  PubMed  CAS  Google Scholar 

  29. Benson, M. J., Dillon, S. R., Castigli, E., Geha, R. S., Xu, S., Lam, K. P., et al. (2008). Cutting edge: The dependence of plasma cells and independence of memory B cells on BAFF and APRIL. Journal of Immunology, 180(6), 3655–3659.

    CAS  Google Scholar 

  30. Sapoznikov, A., Pewzner-Jung, Y., Kalchenko, V., Krauthgamer, R., Shachar, I., & Jung, S. (2008). Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nature Immunology, 9(4), 388–395.

    Article  PubMed  CAS  Google Scholar 

  31. Chu, V. T., Fröhlich, A., Steinhauser, G., Scheel, T., Roch, T., Fillatreau, S., et al. (2011). Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nature Immunology, 12(2), 151–159.

    Article  PubMed  CAS  Google Scholar 

  32. Winter, O., Moser, K., Mohr, E., Zotos, D., Kaminski, H., Szyska, M., et al. (2010). Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood, 116(11), 1867–1875.

    Article  PubMed  CAS  Google Scholar 

  33. Nie, Y., Waite, J., Brewer, F., Sunshine, M. J., Littman, D. R., & Zou, Y. R. (2004). The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. The Journal of Experimental Medicine, 200(9), 1145–1156.

    Article  PubMed  CAS  Google Scholar 

  34. Fry, T. J., & Mackall, C. L. (2005). The many faces of IL-7: From lymphopoiesis to peripheral T cell maintenance. Journal of Immunology, 174(11), 6571–6576.

    CAS  Google Scholar 

  35. Klein, C. A. (2008). Cancer. The metastasis cascade. Science, 321(5897), 1785–1787.

    Article  PubMed  CAS  Google Scholar 

  36. Pantel, K., & Brakenhoff, R. H. (2004). Dissecting the metastatic cascade. Nature Reviews. Cancer, 4(6), 448–456.

    Article  PubMed  CAS  Google Scholar 

  37. Coghlin, C., & Murray, G. I. (2010). Current and emerging concepts in tumour metastasis. The Journal of Pathology, 222(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

  38. Hüsemann, Y., Geigl, J. B., Schubert, F., Musiani, P., Meyer, M., Burghart, E., et al. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13(1), 58–68.

    Article  PubMed  CAS  Google Scholar 

  39. Korkaya, H., Liu, S., & Wicha, M. S. (2011). Breast cancer stem cells, cytokine networks, and the tumor microenvironment. The Journal of Clinical Investigation, 121(10), 3804–3809.

    Article  PubMed  CAS  Google Scholar 

  40. Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute, 100(9), 672–679.

    Article  PubMed  CAS  Google Scholar 

  41. Liu, H., Patel, M. R., Prescher, J. A., Patsialou, A., Qian, D., Lin, J., et al. (2010). Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18115–18120.

    Article  PubMed  CAS  Google Scholar 

  42. Liu, S., Ginestier, C., Ou, S. J., Clouthier, S. G., Patel, S. H., Monville, F., et al. (2011). Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Research, 71(2), 614–624.

    Article  PubMed  CAS  Google Scholar 

  43. Ginestier, C., Liu, S., Diebel, M. E., Korkaya, H., Luo, M., Brown, M., et al. (2010). CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. The Journal of Clinical Investigation, 120(2), 485–497.

    Article  PubMed  CAS  Google Scholar 

  44. Yang, J., Mani, S. A., & Weinberg, R. A. (2006). Exploring a new twist on tumor metastasis. Cancer Research, 66(9), 4549–4552.

    Article  PubMed  CAS  Google Scholar 

  45. Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.

    Article  PubMed  CAS  Google Scholar 

  46. Roodman, G. D. (2004). Mechanisms of bone metastasis. The New England Journal of Medicine, 350(16), 1655–1664.

    Article  PubMed  CAS  Google Scholar 

  47. van der Pluijm, G., Sijmons, B., Vloedgraven, H., Deckers, M., Papapoulos, S., & Löwik, C. (2001). Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: Elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. Journal of Bone and Mineral Research, 16(6), 1077–1091.

    Article  PubMed  Google Scholar 

  48. Terpos, E., & Dimopoulos, M. A. (2011). Interaction between the skeletal and immune systems in cancer: Mechanisms and clinical implications. Cancer Immunology, Immunotherapy, 60(3), 305–317.

    Article  PubMed  CAS  Google Scholar 

  49. Kingsley, L. A., Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2007). Molecular biology of bone metastasis. Molecular Cancer Therapeutics, 6(10), 2609–2617.

    Article  PubMed  CAS  Google Scholar 

  50. Roodman, G. D. (2003). Role of stromal-derived cytokines and growth factors in bone metastasis. Cancer, 97(3 Suppl), 733–738.

    Article  Google Scholar 

  51. Faccio, R. (2011). Immune regulation of the tumor/bone vicious cycle. Annals of the New York Academy of Sciences, 1237, 71–78.

    Article  PubMed  CAS  Google Scholar 

  52. Kakonen, S. M., & Mundy, G. R. (2003). Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer, 97(3 Suppl), 834–839.

    Article  PubMed  Google Scholar 

  53. Sterling, J. A., Edwards, J. R., Martin, T. J., & Mundy, G. R. (2011). Advances in the biology of bone metastasis: How the skeleton affects tumor behavior. Bone, 48(1), 6–15.

    Article  PubMed  CAS  Google Scholar 

  54. Henderson, M. A., Danks, J. A., Slavin, J. L., Byrnes, G. B., Choong, P. F., Spillane, J. B., et al. (2006). Parathyroid hormone-related protein localization in breast cancers predict improved prognosis. Cancer Research, 66(4), 2250–2256.

    Article  PubMed  CAS  Google Scholar 

  55. Canon, J. R., Roudier, M., Bryant, R., Morony, S., Stolina, M., Kostenuik, P. J., et al. (2008). Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clinical & Experimental Metastasis, 25(2), 119–129.

    Article  CAS  Google Scholar 

  56. Rose, A. A., & Siegel, P. M. (2010). Emerging therapeutic targets in breast cancer bone metastasis. Future Oncology, 6(1), 55–74.

    Article  PubMed  CAS  Google Scholar 

  57. Guise, T. A., Yin, J. J., Taylor, S. D., Kumagai, Y., Dallas, M., Boyce, B. F., et al. (1996). Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. The Journal of Clinical Investigation, 98(7), 1544–1549.

    Article  PubMed  CAS  Google Scholar 

  58. Gallwitz, W. E., Guise, T. A., & Mundy, G. R. (2002). Guanosine nucleotides inhibit different syndromes of PTHrP excess caused by human cancers in vivo. The Journal of Clinical Investigation, 110(10), 1559–1572.

    PubMed  CAS  Google Scholar 

  59. Suva, L. J., Washam, C., Nicholas, R. W., & Griffin, R. J. (2011). Bone metastasis: Mechanisms and therapeutic opportunities. Nature Reviews. Endocrinology, 7(4), 208–218.

    Article  PubMed  CAS  Google Scholar 

  60. Buijs, J. T., Stayrook, K. R., & Guise, T. A. (2011). TGF-β in the bone microenvironment: Role in breast cancer metastases. Cancer Microenvironment, 4(3), 261–281.

    Article  PubMed  CAS  Google Scholar 

  61. Juárez, P., & Guise, T. A. (2011). TGF-β in cancer and bone: Implications for treatment of bone metastases. Bone, 48(1), 23–29.

    Article  PubMed  CAS  Google Scholar 

  62. Biswas, S., Nyman, J. S., Alvarez, J. A., Chakrabarti, A., Ayres, A., Sterling, J., et al. (2011). Anti-transforming growth factor β antibody treatment rescues bone loss and prevents breast cancer metastasis to bone. PLoS One, 6(11), e27090.

    Article  PubMed  CAS  Google Scholar 

  63. Muraoka, R. S., Dumont, N., Ritter, C. A., Dugger, T. C., Brantley, D. M., Chen, J., et al. (2002). Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. Journal of Clinical Investigation, 109(12), 1551–1559.

    PubMed  CAS  Google Scholar 

  64. Mourskaia, A. A., Northey, J. J., & Siegel, P. M. (2007). Targeting aberrant TGF-β signaling in preclinical models of cancer. Anti-Cancer Agents in Medicinal Chemistry, 7(5), 504–514.

    Article  PubMed  CAS  Google Scholar 

  65. Morris, J. C., Shapiro, G. I., Tan, A. R., Lawrence, D. P., Olencki, T. E., Dezube, B. J., et al. (2008). Phase I/II study of GC1008: A human anti-transforming growth factor-beta (TGFβ) monoclonal antibody (MAb) in patients with advanced malignant melanoma (MM) or renal cell carcinoma (RCC). Journal of Clinical Oncology, 26(Suppl). abstr 9028.

    Google Scholar 

  66. Ehata, S., Hanyn, A., Fujime, M., Katsuno, Y., Fukunaga, E., Goto, K., et al. (2007). Ki26894, a novel transforming growth factor-β type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Science, 98(1), 127–133.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang, B., Halder, S. K., Zhang, S., & Datta, P. K. (2009). Targeting transforming growth factor-beta signaling in liver metastasis of colon cancer. Cancer Letters, 277(1), 114–120.

    Article  PubMed  CAS  Google Scholar 

  68. Melisi, D., Ishiyama, S., Sclabas, G. M., Fleming, J. B., Xia, Q., Tortora, G., et al. (2008). LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Molecular Cancer Therapeutics, 7(4), 829–840.

    Article  PubMed  CAS  Google Scholar 

  69. Calvo-Aller, E., Baselga, J., Glatt, S., Cleverly, A., Lahn, M., Arteaga, C. L., et al. (2008). First human dose escalation study in patients with metastatic malignancies to determine safety and pharmacokinetics of LY2157299, a small molecule inhibitor of the transforming growth factor-beta receptor I kinase. Journal of Clinical Oncology, 26(15 Suppl). abstr 14554.

    Google Scholar 

  70. Hau, P., Jachimczak, P., Schlingensiepen, R., Schulmeyer, F., Jauch, T., Steinbrecher, A., et al. (2007). Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: From preclinical to phase I/II studies. Oligonucleotides, 17(2), 201–212.

    Article  PubMed  CAS  Google Scholar 

  71. Bogdahn, U., Hau, P., Stockhammer, G., Venkataramana, N. K., Mahapatra, A. K., Suri, A., et al. (2011). Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: Results of a randomized and controlled phase IIb study. Neuro-Oncology, 13(1), 132–142.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang, K., Kim, S., Cremasco, V., Hirbe, A. C., Collins, L., Piwnica-Worms, D., et al. (2011). CD8+ T cells regulate bone tumor burden independent of osteoclast resorption. Cancer Research, 71(14), 4799–4808.

    Article  PubMed  CAS  Google Scholar 

  73. Koh, B. I., & Kang, Y. (2012). The pro-metastatic role of bone marrow-derived cells: A focus on MSCs and regulatory T cells. EMBO Reports, 13(5), 412–422.

    Article  PubMed  CAS  Google Scholar 

  74. Gallo, M., De Luca, A., Lamura, L., & Normanno, N. (2012). Zoledronic acid blocks the interaction between mesenchymal stem cells and breast cancer cells: Implications for adjuvant therapy of breast cancer. Annals of Oncology, 23(3), 597–604.

    Article  PubMed  CAS  Google Scholar 

  75. Hamilton, E., Clay, T. M., & Blackwell, K. L. (2011). New perspectives on zoledronic acid in breast cancer: Potential augmentation of anticancer immune response. Cancer Investigation, 29(8), 533–541.

    Article  PubMed  CAS  Google Scholar 

  76. Sanders, J. M., Ghosh, S., Chan, J. M., Meints, G., Wang, H., Raker, A. M., et al. (2004). Quantitative structure–activity relationships for gammadelta T cell activation by bisphosphonates. Journal of Medicinal Chemistry, 47(2), 375–384.

    Article  PubMed  CAS  Google Scholar 

  77. Benzaïd, I., Mönkkönen, H., Stresing, V., Bonnelye, E., Green, J., Mönkkönen, J., et al. (2011). High phosphoantigen levels in bisphosphonate-treated human breast tumors promote Vgamma9Vdelta2 T-cell chemotaxis and cytotoxicity in vivo. Cancer Research, 71(13), 4562–4572.

    Article  PubMed  CAS  Google Scholar 

  78. Cabillic, F., Toutirais, O., Lavoué, V., de La Pintière, C. T., Daniel, P., Rioux-Leclerc, N., et al. (2010). Aminobisphosphonate-pretreated dendritic cells trigger successful Vgamma9Vdelta2 T cell amplification for immunotherapy in advanced cancer patients. Cancer Immunology, Immunotherapy, 59(11), 1611–1619.

    Article  PubMed  CAS  Google Scholar 

  79. Santini, D., Martini, F., Fratto, M. E., Galluzzo, S., Vincenzi, B., Agrati, C., et al. (2009). In vivo effects of zoledronic acid on peripheral gammadelta T lymphocytes in early breast cancer patients. Cancer Immunology, Immunotherapy, 58(1), 31–38.

    Article  PubMed  CAS  Google Scholar 

  80. Meraviglia, S., Eberl, M., Vermijlen, D., Todaro, M., Buccheri, S., Cicero, G., et al. (2010). In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clinical and Experimental Immunology, 161(2), 290–297.

    PubMed  CAS  Google Scholar 

  81. Coleman, R. E., Winter, M. C., Cameron, D., Bell, R., Dodwell, D., Keane, M. M., et al. (2010). The effects of adding zoledronic acid to neoadjuvant chemotherapy on tumour response: Exploratory evidence for direct anti-tumour activity in breast cancer. British Journal of Cancer, 102(7), 1099–1105.

    Article  PubMed  CAS  Google Scholar 

  82. Aft, R., Naughton, M., Trinkaus, K., Watson, M., Ylagan, L., Chavez-MacGregor, M., et al. (2010). Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: An open label, randomised, phase 2 trial. The Lancet Oncology, 11(5), 421–428.

    Article  PubMed  CAS  Google Scholar 

  83. Rack, B., Jückstock, J., Genss, E. M., Schoberth, A., Schindlbeck, C., Strobl, B., et al. (2010). Effect of zoledronate on persisting isolated tumour cells in patients with early breast cancer. Anticancer Research, 30(5), 1807–1813.

    PubMed  CAS  Google Scholar 

  84. Eidtmann, H., de Boer, R., Bundred, N., Llombart-Cussac, A., Davidson, N., Neven, P., et al. (2010). Efficacy of zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: 36-month results of the ZO-FAST study. Annals of Oncology, 21(11), 2188–2194.

    Article  PubMed  CAS  Google Scholar 

  85. Gnant, M., Mlineritsch, B., Schippinger, W., Luschin-Ebengreuth, G., Pöstlberger, S., Menzel, C., et al. (2009). Endocrine therapy plus zoledronic acid in premenopausal breast cancer. The New England Journal of Medicine, 360(7), 679–691.

    Article  PubMed  CAS  Google Scholar 

  86. Stopeck, A. T., Lipton, A., Body, J. J., Steger, G. G., Tonkin, K., de Boer, R. H., et al. (2010). Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: A randomized, double-blind study. Journal of Clinical Oncology, 28(35), 5132–5139.

    Article  PubMed  CAS  Google Scholar 

  87. Lipton, A. (2010). Implications of bone metastases and the benefits of bone-targeted therapy. Seminars in Oncology, 37(Suppl 2), S15–S29.

    Article  PubMed  CAS  Google Scholar 

  88. Suva, L. J., Brander, B. E., & Makhoul, I. (2011). Update on bone-modifying agents in metastatic breast cancer. Nature Reviews Endocrinology, 7(7), 380–381.

    Article  PubMed  Google Scholar 

  89. Fouque-Aubert, A., & Chapurlat, R. (2008). Influence of RANKL inhibition on immune system in the treatment of bone diseases. Joint, Bone, Spine, 75(1), 5–10.

    Article  PubMed  CAS  Google Scholar 

  90. Roux, S. (2006). RANKL inhibitors: A bright future? Joint, Bone, Spine, 73(2), 129–131.

    Article  PubMed  Google Scholar 

  91. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458.

    Article  PubMed  CAS  Google Scholar 

  92. Kaplan, R. N., Psaila, B., & Lyden, D. (2006). Bone marrow cells in the ‘pre-metastatic’ niche: Within bone and beyond. Cancer Metastasis Reviews, 25(4), 521–529.

    PubMed  Google Scholar 

  93. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.

    Article  PubMed  CAS  Google Scholar 

  94. Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the ‘soil’: The premetastatic niche. Cancer Research, 66(23), 11089–11093.

    Article  PubMed  CAS  Google Scholar 

  95. Wels, J., Kaplan, R. N., Rafii, S., & Lyden, D. (2008). Migratory neighbors and distant invaders: Tumor-associated niche cells. Genes & Development, 22(5), 559–574.

    Article  CAS  Google Scholar 

  96. Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh, M., Perez, E. A., et al. (2007). Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. The New England Journal of Medicine, 357(26), 2666–2676.

    Article  PubMed  CAS  Google Scholar 

  97. Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. The New England Journal of Medicine, 350(23), 2335–2342.

    Article  PubMed  CAS  Google Scholar 

  98. Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., et al. (2006). Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. The New England Journal of Medicine, 355(24), 2542–2550.

    Article  PubMed  CAS  Google Scholar 

  99. Xu, L., Duda, D. G., di Tomaso, E., Ancukiewicz, M., Chung, D. C., Lauwers, G. Y., et al. (2009). Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1alpha, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Cancer Research, 69(20), 7905–7910.

    Article  PubMed  CAS  Google Scholar 

  100. Allen, M., & Jones, L. J. (2011). Jekyll and Hyde: The role of the microenvironment on the progression of cancer. The Journal of Pathology, 223(2), 162–176.

    Article  PubMed  CAS  Google Scholar 

  101. Ellis, L. M., & Hicklin, D. J. (2008). VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nature Reviews. Cancer, 8(8), 579–591.

    Article  PubMed  CAS  Google Scholar 

  102. Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Siebels, M., et al. (2007). Sorafenib in advanced clear-cell renal-cell carcinoma. The New England Journal of Medicine, 356(2), 125–134.

    Article  PubMed  CAS  Google Scholar 

  103. Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J. F., et al. (2008). Sorafenib in advanced hepatocellular carcinoma. The New England Journal of Medicine, 359(4), 378–390.

    Article  PubMed  CAS  Google Scholar 

  104. Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Rixe, O., et al. (2007). Sunitinib versus interferon alpha in metastatic renal-cell carcinoma. The New England Journal of Medicine, 356(2), 115–124.

    Article  PubMed  CAS  Google Scholar 

  105. Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44.

    Article  PubMed  CAS  Google Scholar 

  106. Kagan, H. M., & Li, W. (2003). Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. Journal of Cellular Biochemistry, 88(4), 660–672.

    Article  PubMed  CAS  Google Scholar 

  107. Erler, J. T., Bennewith, K. L., Nicolau, M., Dornhöfer, N., Kong, C., Le, Q. T., et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 440(7088), 1222–1226.

    Article  PubMed  CAS  Google Scholar 

  108. Barker, H. E., Cox, T. R., & Erler, J. T. (2012). The rationale for targeting the LOX family in cancer. Nature Reviews. Cancer, 12(8), 540–552.

    Article  PubMed  CAS  Google Scholar 

  109. Müller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.

    Article  PubMed  Google Scholar 

  110. Shiozawa, Y., Pedersen, E. A., Havens, A. M., Jung, Y., Mishra, A., Joseph, J., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121(4), 1298–1312.

    Article  PubMed  CAS  Google Scholar 

  111. Schuettpelz, L. G., & Link, D. C. (2011). Niche competition and cancer metastasis to bone. The Journal of Clinical Investigation, 121(4), 1253–1255.

    Article  PubMed  CAS  Google Scholar 

  112. Liang, Z., Wu, T., Lou, H., Yu, X., Taichman, R. S., Lau, S. K., et al. (2004). Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Research, 64(12), 4302–4308.

    Article  PubMed  CAS  Google Scholar 

  113. Huang, E. H., Singh, B., Cristofanilli, M., Gelovani, J., Wei, C., Vincent, L., et al. (2009). A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. The Journal of Surgical Research, 155(2), 231–236.

    Article  PubMed  CAS  Google Scholar 

  114. Johnson, M. D., Torri, J. A., Lippman, M. E., & Dickson, R. B. (1999). Regulation of motility and protease expression in PKC-mediated induction of MCF-7 breast cancer cell invasiveness. Experimental Cell Research, 247(1), 105–113.

    Article  PubMed  CAS  Google Scholar 

  115. Roberts, J. D., Smith, M. R., Feldman, E. J., Cragg, L., Millenson, M. M., Roboz, G. J., et al. (2006). Phase I study of bryostatin-1 and fludarabine in patients with chronic lymphocytic leukemia and indolent (non-Hodgkin’s) lymphoma. Clinical Cancer Research, 12(19), 5809–5816.

    Article  PubMed  CAS  Google Scholar 

  116. Haas, N. B., Smith, M., Lewis, N., Littman, L., Yeslow, G., Joshi, I. D., et al. (2003). Weekly bryostatin-1 in metastatic renal cell carcinoma: A phase II study. Clinical Cancer Research, 9(1), 109–114.

    PubMed  CAS  Google Scholar 

  117. Smith, M. C., Luker, K. E., Garbow, J. R., Prior, J. L., Jackson, E., Piwnica-Worms, D., et al. (2004). CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Research, 64(23), 8604–8612.

    Article  PubMed  CAS  Google Scholar 

  118. Dillmann, F., Veldwijk, M. R., Laufs, S., Sperandio, M., Calandra, G., Wenz, F., et al. (2009). Plerixafor inhibits chemotaxis toward SDF-1 and CXCR4-mediated stroma contact in a dose-dependent manner resulting in increased susceptibility of BCR-ABL+ cell to imatinib and nilotinib. Leukemia & Lymphoma, 50(10), 1676–1686.

    Article  CAS  Google Scholar 

  119. Kidd, S., Spaeth, E., Watson, K., Burks, J., Lu, H., Klopp, A., et al. (2012). Origins of the tumor microenvironment: Quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One, 7(2), e30563.

    Article  PubMed  CAS  Google Scholar 

  120. Christopher, M. J., Liu, F., Hilton, M. J., Long, F., & Link, D. C. (2009). Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood, 114(7), 1331–1339.

    Article  PubMed  CAS  Google Scholar 

  121. Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor CXCR4. Seminars in Cancer Biology, 14(3), 171–179.

    Article  PubMed  CAS  Google Scholar 

  122. Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563.

    Article  PubMed  CAS  Google Scholar 

  123. Aggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: A double-edged sword. Nature Reviews. Immunology, 3(9), 745–756.

    Article  PubMed  CAS  Google Scholar 

  124. Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H., & Karin, M. (2004). Inhibition of NF-ĸB in cancer cells converts inflammation-induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer Cell, 6(3), 297–305.

    Article  PubMed  CAS  Google Scholar 

  125. Lin, W. W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117(5), 1175–1183.

    Article  PubMed  CAS  Google Scholar 

  126. Trinchieri, G. (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews. Immunology, 3(2), 133–146.

    Article  PubMed  CAS  Google Scholar 

  127. Fakhrai, H., Mantil, J. C., Liu, L., Nicholson, G. L., Murphy-Satter, C. S., Ruppert, J., et al. (2006). Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Therapy, 13(12), 1052–1060.

    Article  PubMed  CAS  Google Scholar 

  128. Bussard, K. M., Venzon, D. J., & Mastro, A. M. (2010). Osteoblasts are a major source of inflammatory cytokines in the tumor microenvironment of bone metastatic breast cancer. Journal of Cellular Biochemistry, 111(5), 1138–1148.

    Article  PubMed  CAS  Google Scholar 

  129. Herman, S. E., Gordon, A. L., Hertlein, E., Ramanunni, A., Zhang, X., Jaglowski, S., et al. (2011). Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood, 117(23), 6287–6296.

    Article  PubMed  CAS  Google Scholar 

  130. Shinohara, M., Koga, T., Okamoto, K., Sakaguchi, S., Arai, K., Yasuda, H., et al. (2008). Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell, 132(5), 794–806.

    Article  PubMed  CAS  Google Scholar 

  131. Tai, Y. T., Chang, B. Y., Kong, S. Y., Fulciniti, M., Yang, G., Calle, Y., et al. (2012). Bruton’s tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood‚ 120(9), 1877-1887. doi:10.1182/blood-2011-12-396853. Epub 11 June 2012.

    Google Scholar 

  132. Reddy, B.Y., Lim, P.K., Silverio, K., Patel, S.A., Won, B.W., Rameshwar, P. (2012). The microenvironmental effect in the progression, metastasis, and dormancy of breast cancer: A model system within bone marrow. International Journal of Breast Cancer, 2012, 721659 (Epub 6 Feb 2012).

  133. Braun, S., Kentenich, C., Janni, W., Hepp, F., de Waal, J., Willgeroth, F., et al. (2000). Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. Journal of Clinical Oncology, 18(1), 80–86.

    PubMed  CAS  Google Scholar 

  134. Rameshwar, P. (2010). Breast cancer cell dormancy in bone marrow: Potential therapeutic targets within the marrow microenvironment. Expert Review of Anticancer Therapy, 10(2), 129–132.

    Article  PubMed  CAS  Google Scholar 

  135. Kiel, M. J., & Morrison, S. J. (2008). Uncertainty in the niches that maintain haematopoietic stem cells. Nat Reviews. Immunology, 8(4), 290–301.

    Article  CAS  Google Scholar 

  136. Lim, P. K., Bliss, S. A., Patel, S. A., Taborga, M., Dave, M. A., Gregory, L. A., et al. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Research, 71(5), 1550–1560.

    Article  PubMed  CAS  Google Scholar 

  137. Locke, M., Feisst, V., & Dunbar, P. R. (2011). Human adipose-derived stem cells: Separating promise from clinical need. Stem Cells, 29(3), 404–411.

    Article  PubMed  CAS  Google Scholar 

  138. Moharita, A. L., Taborga, M., Corcoran, K. E., Bryan, M., Patel, P. S., & Rameshwar, P. (2006). SDF-1alpha regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Blood, 108(10), 3245–3252.

    Article  PubMed  CAS  Google Scholar 

  139. Patel, S. A., Dave, M. A., Murthy, R. G., Helmy, K. Y., & Rameshwar, P. (2011). Metastatic breast cancer cells in the bone marrow microenvironment: Novel insights into oncoprotection. Oncology Reviews, 5(2), 93–102.

    Article  PubMed  Google Scholar 

  140. Zhang, Q., Shi, S., Liu, Y., Uyanne, J., Shi, Y., Shi, S., et al. (2009). Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. Journal of Immunology, 183(12), 7787–7798.

    Article  CAS  Google Scholar 

  141. Davis, M. E., Zuckerman, J. E., Choi, C. H., Seligson, D., Tolcher, A., Alabi, C. A., et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 464(7291), 1067–1070.

    Article  PubMed  CAS  Google Scholar 

  142. Grymula, K., Tarnowski, M., Wysoczynski, M., Drukala, J., Barr, F. G., Ratajczak, J., et al. (2010). Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior in human rhabdomyosarcomas. International Journal of Cancer, 127(11), 2554–2568.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Domschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanovic, S., Schuetz, F., Sohn, C. et al. Bone marrow microenvironment in cancer patients: immunological aspects and clinical implications. Cancer Metastasis Rev 32, 163–178 (2013). https://doi.org/10.1007/s10555-012-9397-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9397-1

Keywords

Navigation