Skip to main content

Advertisement

Log in

The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The phosphatidyl inositol 3-kinase (PI3K)/Akt pathway mediates the effects of a variety of extracellular signals in a number of cellular processes including cell growth, proliferation, and survival. The alteration of integrants of this pathway through mutation of its coding genes increases the activation status of the signaling and can thus lead to cellular transformation. The frequent dysregulation of the PI3K/Akt pathway in breast cancer (BC) and the mediation of this pathway in different processes characteristically implicated in tumorigenesis have attracted the interest of this pathway in BC; however, a more comprehensive understanding of the signaling intricacies is necessary to develop clinical applications of the modulation of this pathway in this pathology. We review a series of experiments examining the contribution of alteration of integrants of this signaling network to human BC and we make an update of the information about the effect of the modulation of this pathway in this cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dillon, R. L., White, D. E., & Muller, W. J. (2007). The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene, 26(9), 1338–1345.

    Article  CAS  PubMed  Google Scholar 

  2. Chalhoub, N., & Baker, S. J. (2009). PTEN and the PI3-kinase pathway in cancer. Annual Review of Patholology, 4, 127–150.

    Article  CAS  Google Scholar 

  3. Chitnis, M. M., et al. (2008). The type 1 insulin-like growth factor receptor pathway. Clinical Cancer Research, 14(20), 6364–6370.

    Article  CAS  PubMed  Google Scholar 

  4. Dayanir, V., et al. (2001). Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. Journal of Biological Chemistry, 276(21), 17686–17692.

    Article  CAS  PubMed  Google Scholar 

  5. Dillon, R. L., et al. (2009). Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression. Cancer Research, 69(12), 5057–5064.

    Article  CAS  PubMed  Google Scholar 

  6. Ma, W., & Quirion, R. (2005). The ERK/MAPK pathway, as a target for the treatment of neuropathic pain. Expert Opinion on Therapeutic Targets, 9(4), 699–713.

    Article  CAS  PubMed  Google Scholar 

  7. Ito, K., Bernardi, R., & Pandolfi, P. P. (2009). A novel signaling network as a critical rheostat for the biology and maintenance of the normal stem cell and the cancer-initiating cell. Current Opinion in Genetics and Development, 19(1), 51–59.

    Article  CAS  PubMed  Google Scholar 

  8. Hirsch, E., et al. (2008). Taming the PI3K team to hold inflammation and cancer at bay. Pharmacology and Therapeutics, 118(2), 192–205.

    Article  CAS  PubMed  Google Scholar 

  9. Thiery, J. P., et al. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.

    Article  CAS  PubMed  Google Scholar 

  10. Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Reviews, 28(1–2), 15–33.

    PubMed  Google Scholar 

  11. Xia, C., et al. (2006). Regulation of angiogenesis and tumor growth by p110 alpha and AKT1 via VEGF expression. Journal of Cellular Physiology, 209(1), 56–66.

    Article  CAS  PubMed  Google Scholar 

  12. Liang, Z., et al. (2007). CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochemical and Biophysical Research Communications, 359(3), 716–722.

    Article  CAS  PubMed  Google Scholar 

  13. Graupera, M., et al. (2008). Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature, 453(7195), 662–666.

    Article  CAS  PubMed  Google Scholar 

  14. Chin, Y. R., & Toker, A. (2009). Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal, 21(4), 470–476.

    Article  CAS  PubMed  Google Scholar 

  15. S. Loi, B.H.-K., F. Lallemand, L. Pusztai, A. Bardelli, C. Gillett, P. Ellis, M. J. Piccart-Gebhart, W. A. Phillips, G. A. McArthur, C. Sotiriou (2009) Correlation of PIK3CA mutation-associated gene expression signature (PIK3CA-GS) with deactivation of the PI3K pathway and with prognosis within the luminal-B ER + breast cancers. In ASCO. Journal of Clinical Oncology 27:15s (suppl; abstr 533)

  16. Noh, W. C., et al. (2008). Activation of the mTOR signaling pathway in breast cancer and its correlation with the clinicopathologic variables. Breast Cancer Research and Treatment, 110(3), 477–483.

    Article  CAS  PubMed  Google Scholar 

  17. Lopez-Knowles, E., et al. (2010). PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. International Journal of Cancer, 126(5), 1121–1131.

    CAS  Google Scholar 

  18. Aleskandarany, M. A., et al. (2010). PIK3CA expression in invasive breast cancer: a biomarker of poor prognosis. Breast Cancer Research and Treatment, 122(1), 45–53.

    Article  CAS  PubMed  Google Scholar 

  19. Marty, B., et al. (2008). Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells. Breast Cancer Research, 10(6), R101.

    Article  PubMed  Google Scholar 

  20. Aleskandarany, M. A., et al. (2009). PIK3CA expression in invasive breast cancer: a biomarker of poor prognosis. Breast Cancer Research and Treatment., 122(1), 45–53.

    Article  PubMed  Google Scholar 

  21. Park, S. S., & Kim, S. W. (2007). Activated Akt signaling pathway in invasive ductal carcinoma of the breast: correlation with HER2 overexpression. Oncology Reports, 18(1), 139–143.

    PubMed  Google Scholar 

  22. Wu, Y., et al. (2008). Clinical significance of Akt and HER2/neu overexpression in African-American and Latina women with breast cancer. Breast Cancer Research, 10(1), R3.

    Article  PubMed  Google Scholar 

  23. Tokunaga, E., et al. (2006). Akt is frequently activated in HER2/neu-positive breast cancers and associated with poor prognosis among hormone-treated patients. International Journal of Cancer, 118(2), 284–289.

    Article  CAS  Google Scholar 

  24. Mottolese M, N.F., Di Benedetto A, Melucci E, Sperduti I, Perracchio L, Buglioni S, Vici P, Nisticò C, Pinnarò P, Fabi A, Bria E Regina Elena (2009) Identification of an Adverse Biologic Profile in Cyclophosphamide/Metotrexate/5-Fluorouracil Treated Early Stage Breast Cancer Patients by Immunohistochemical Analysis of PI3K/p-Akt Pathway Alterations. In San Antonio Breast Cancer Meeting.

  25. Kirkegaard, T., et al. (2005). AKT activation predicts outcome in breast cancer patients treated with tamoxifen. Journal of Pathology, 207(2), 139–146.

    Article  CAS  PubMed  Google Scholar 

  26. Carpten, J. D., et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 448(7152), 439–444.

    Article  CAS  PubMed  Google Scholar 

  27. Saal, L. H., et al. (2005). PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Research, 65(7), 2554–2559.

    Article  CAS  PubMed  Google Scholar 

  28. Kalinsky, K., et al. (2009). PIK3CA mutation associates with improved outcome in breast cancer. Clinical Cancer Research, 15(16), 5049–5059.

    Article  CAS  PubMed  Google Scholar 

  29. Berns, K., et al. (2007). A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell, 12(4), 395–402.

    Article  CAS  PubMed  Google Scholar 

  30. Stemke-Hale, K., et al. (2008). An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Research, 68(15), 6084–6091.

    Article  CAS  PubMed  Google Scholar 

  31. Perez-Tenorio, G., et al. (2007). PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clinical Cancer Research, 13(12), 3577–3584.

    Article  CAS  PubMed  Google Scholar 

  32. Oda, K., et al. (2005). High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Research, 65(23), 10669–10673.

    Article  CAS  PubMed  Google Scholar 

  33. Li, H., et al. (2009). PIK3CA mutations mostly begin to develop in ductal carcinoma of the breast. Experimental and Molecular Pathology, 88(1), 150–155.

    Article  PubMed  Google Scholar 

  34. Bose, S., et al. (2002). Reduced expression of PTEN correlates with breast cancer progression. Human Pathology, 33(4), 405–409.

    Article  CAS  PubMed  Google Scholar 

  35. Dunlap, J., et al. (2010). Phosphatidylinositol–3-kinase and AKT1 mutations occur early in breast carcinoma. Breast Cancer Research and Treatment, 120(2), 409–418.

    Article  CAS  PubMed  Google Scholar 

  36. Sakr R, C.S., Wynveen C, Barbashina V, Arroyo C, Morrogh M, Heguy A, Olvera N, Rosen N, Morrow M, King T (2009) Reduced/Absent PTEN Expression Is More Common in HER2 Non-Amplified DCIS. In San Antonio Breast Cancer Meeting

  37. Dupont J, L.A., Knoop A, Ewertz M, Barrett CJ, Hackl W, Bandaru R, Crowell T, Rheinhardt J, Liu W, Gardner H (2009) PIK3CA Mutations Can Be Acquired during Tumor Progression in Breast Cancer. In San Antonio Breast Cancer Meeting

  38. Oda, K., et al. (2008). PIK3CA cooperates with other phosphatidylinositol 3’-kinase pathway mutations to effect oncogenic transformation. Cancer Research, 68(19), 8127–8136.

    Article  CAS  PubMed  Google Scholar 

  39. Renner, O., et al. (2008). Activation of phosphatidylinositol 3-kinase by membrane localization of p110alpha predisposes mammary glands to neoplastic transformation. Cancer Research, 68(23), 9643–9653.

    Article  CAS  PubMed  Google Scholar 

  40. Lai, Y. L., et al. (2008). PIK3CA exon 20 mutation is independently associated with a poor prognosis in breast cancer patients. Annals of Surgical Oncology, 15(4), 1064–1069.

    Article  PubMed  Google Scholar 

  41. Lerma, E., et al. (2008). Exon 20 PIK3CA mutations decreases survival in aggressive (HER-2 positive) breast carcinomas. Virchows Archiv, 453(2), 133–139.

    Article  CAS  PubMed  Google Scholar 

  42. Maruyama, N., et al. (2007). Clinicopathologic analysis of breast cancers with PIK3CA mutations in Japanese women. Clinical Cancer Research, 13(2 Pt 1), 408–414.

    Article  CAS  PubMed  Google Scholar 

  43. Li, S. Y., et al. (2006). PIK3CA mutations in breast cancer are associated with poor outcome. Breast Cancer Research and Treatment, 96(1), 91–95.

    Article  CAS  PubMed  Google Scholar 

  44. Bachman, K. E., et al. (2004). The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biology & Therapy, 3(8), 772–775.

    Article  CAS  Google Scholar 

  45. Campbell, I. G., et al. (2004). Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Research, 64(21), 7678–7681.

    Article  CAS  PubMed  Google Scholar 

  46. Levine, D. A., et al. (2005). Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clinical Cancer Research, 11(8), 2875–2878.

    Article  CAS  PubMed  Google Scholar 

  47. Bozhanov, S.S., et al (2010) Alterations in p53, BRCA1, ATM, PIK3CA, and HER2 genes and their effect in modifying clinicopathological characteristics and overall survival of Bulgarian patients with breast cancer. Journal of Cancer Research and Clinical Oncology, 136(11), 1657–1669.

    Google Scholar 

  48. Vitolo, M. I., et al. (2009). Deletion of PTEN promotes tumorigenic signaling, resistance to anoikis, and altered response to chemotherapeutic agents in human mammary epithelial cells. Cancer Research, 69(21), 8275–8283.

    Article  CAS  PubMed  Google Scholar 

  49. Eng, C. (2003). PTEN: one gene, many syndromes. Human Mutation, 22(3), 183–198.

    Article  CAS  PubMed  Google Scholar 

  50. Chung, M. J., et al. (2004). Inactivation of the PTEN gene protein product is associated with the invasiveness and metastasis, but not angiogenesis, of breast cancer. Pathology International, 54(1), 10–15.

    Article  CAS  PubMed  Google Scholar 

  51. Depowski, P. L., Rosenthal, S. I., & Ross, J. S. (2001). Loss of expression of the PTEN gene protein product is associated with poor outcome in breast cancer. Modern Pathology, 14(7), 672–676.

    Article  CAS  PubMed  Google Scholar 

  52. Perren, A., et al. (1999). Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. American Journal of Pathology, 155(4), 1253–1260.

    CAS  PubMed  Google Scholar 

  53. Tsutsui, S., et al. (2005). Reduced expression of PTEN protein and its prognostic implications in invasive ductal carcinoma of the breast. Oncology, 68(4–6), 398–404.

    Article  CAS  PubMed  Google Scholar 

  54. Lee, J. S., et al. (2004). Reduced PTEN expression is associated with poor outcome and angiogenesis in invasive ductal carcinoma of the breast. Applied Immunohistochemistry & Molecular Morphology, 12(3), 205–210.

    Article  Google Scholar 

  55. Shoman, N., et al. (2005). Reduced PTEN expression predicts relapse in patients with breast carcinoma treated by tamoxifen. Modern Pathology, 18(2), 250–259.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu, L., Loo, W. T., & Louis, W. C. (2007). PTEN and VEGF: possible predictors for sentinel lymph node micro-metastasis in breast cancer. Biomedicine & Pharmacotherapy, 61(9), 558–561.

    Article  CAS  Google Scholar 

  57. Panigrahi, A. R., et al. (2004). The role of PTEN and its signalling pathways, including AKT, in breast cancer; an assessment of relationships with other prognostic factors and with outcome. Journal of Pathology, 204(1), 93–100.

    Article  CAS  PubMed  Google Scholar 

  58. Saal, L. H., et al. (2007). Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proceedings of the National Academy of Sciences of the United States of America, 104(18), 7564–7569.

    Article  CAS  PubMed  Google Scholar 

  59. Capodanno, A., et al. (2009). Dysregulated PI3K/Akt/PTEN pathway is a marker of a short disease-free survival in node-negative breast carcinoma. Human Pathology, 40(10), 1408–1417.

    Article  CAS  PubMed  Google Scholar 

  60. Brugge, J., Hung, M. C., & Mills, G. B. (2007). A new mutational AKTivation in the PI3K pathway. Cancer Cell, 12(2), 104–107.

    Article  CAS  PubMed  Google Scholar 

  61. Loi, S., et al (2010) PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 107(22), 10208–10213.

    Article  CAS  PubMed  Google Scholar 

  62. Knuefermann, C., et al. (2003). HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene, 22(21), 3205–3212.

    Article  CAS  PubMed  Google Scholar 

  63. Liedtke, C., et al. (2008). PIK3CA-activating mutations and chemotherapy sensitivity in stage II–III breast cancer. Breast Cancer Research, 10(2), R27.

    Article  PubMed  Google Scholar 

  64. Yang, S. X., et al. (2010). Akt phosphorylation at Ser473 predicts benefit of paclitaxel chemotherapy in node-positive breast cancer. Journal of Clinical Oncology, 28(18), 2974–2981.

    Article  CAS  PubMed  Google Scholar 

  65. Yamnik, R. L., & Holz, M. K. (2009). mTOR/S6K1 and MAPK/RSK signaling pathways coordinately regulate estrogen receptor alpha serine 167 phosphorylation. FEBS Letters, 584(1), 124–128.

    Article  Google Scholar 

  66. Perez-Tenorio, G., & Stal, O. (2002). Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. British Journal of Cancer, 86(4), 540–545.

    Article  CAS  PubMed  Google Scholar 

  67. Tokunaga, E., et al. (2006). The association between Akt activation and resistance to hormone therapy in metastatic breast cancer. European Journal of Cancer, 42(5), 629–635.

    Article  CAS  PubMed  Google Scholar 

  68. Miller TW, F.E., Gonzalez-Angulo AM, Hennessy BT, Mills GB, McKinley ET, Manning HC, Arteaga CL (2009) Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer is dependent upon phosphatidylinositol-3 kinase (PI3K) signaling. In San Antonio Breast Cancer Meeting

  69. Stal, O., et al. (2003). Akt kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Research, 5(2), R37–R44.

    Article  CAS  PubMed  Google Scholar 

  70. Miller, T. W., et al. (2010). Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. Journal of Clinical Investigation, 120(7), 2406–2413.

    Article  CAS  PubMed  Google Scholar 

  71. Eichhorn, P. J., et al. (2008). Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Research, 68(22), 9221–9230.

    Article  CAS  PubMed  Google Scholar 

  72. She, S. C., Ye, Q., Lobo, J., Haskell, K. M., Leander, K. R., DeFeo-Jones, D., et al. (2009). Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. Cancer Research, 69, 3061.

    Google Scholar 

  73. Speicher TJ, H.W., Lipton A. (2009) Synergistic Growth Inhibition with a PI3 Kinase/mTOR Inhibitor Plus Lapatinib. In San Antonio Breast Cancer Meeting.

  74. Nagata, Y., et al. (2004). PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 6(2), 117–127.

    Article  CAS  PubMed  Google Scholar 

  75. Yao, E., et al. (2009). Suppression of HER2/HER3-mediated growth of breast cancer cells with combinations of GDC-0941 PI3K inhibitor, trastuzumab, and pertuzumab. Clinical Cancer Research, 15(12), 4147–4156.

    Article  CAS  PubMed  Google Scholar 

  76. Wang, S. E., et al. (2008). Transforming growth factor beta engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Molecular and Cellular Biology, 28(18), 5605–5620.

    Article  CAS  PubMed  Google Scholar 

  77. O’Brien, N. A., et al. (2010). Activated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib. Molecular Cancer Therapeutics, 9(6), 1489–1502.

    Article  PubMed  Google Scholar 

  78. Kataoka, Y., et al. (2009). Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Annals of Oncology, 21(2), 255–262.

    Article  PubMed  Google Scholar 

  79. Vorkas PA, A.S., Poumpouridou N, Kroupis C, Mavroudis D, Stathopoulos E, Georgoulias V, Lianidou ES (2009) PI3K Pathway Activity and Response to First-Line Chemotherapy in Combination with Trastuzumab in Patients with HER2-Positive Metastatic Breast Cancer. In San Antonio Breast Cancer Meeting.

  80. Schnell, C. R., et al. (2008). Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Research, 68(16), 6598–6607.

    Article  CAS  PubMed  Google Scholar 

  81. Courtney, K. D., Corcoran, R. B., & Engelman, J. A. (2010). The PI3K pathway as drug target in human cancer. Journal of Clinical Oncology, 28(6), 1075–1083.

    Article  CAS  PubMed  Google Scholar 

  82. O’Reilly, K. E., et al. (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Research, 66(3), 1500–1508.

    Article  PubMed  Google Scholar 

  83. Carracedo, A., et al. (2008). Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. Journal of Clinical Investigation, 118(9), 3065–3074.

    CAS  PubMed  Google Scholar 

  84. Engelman, J. A., et al. (2008). Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Medicine, 14(12), 1351–1356.

    Article  CAS  PubMed  Google Scholar 

  85. Bertrand, F. E., et al. (2006). Synergy between an IGF-1R antibody and Raf/MEK/ERK and PI3K/Akt/mTOR pathway inhibitors in suppressing IGF-1R-mediated growth in hematopoietic cells. Leukemia, 20(7), 1254–1260.

    Article  CAS  PubMed  Google Scholar 

  86. Sharon Barr, S.R., Elizabeth Buck, David Epstein, Mark Miglarese (2010) Co-targeting mTOR and IGF-1R/IR results in synergistic activity against a broad array of tumor cell lines, independent of KRAS mutation status. In AACR 101st Annual Meeting.

  87. Serra, V., et al. (2008). NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Research, 68(19), 8022–8030.

    Article  CAS  PubMed  Google Scholar 

  88. She, Q. B., et al. (2008). Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS ONE, 3(8), e3065.

    Article  PubMed  Google Scholar 

  89. Faber, A. C., et al. (2009). Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proceedings of the National Academy of Sciences of the United States of America, 106(46), 19503–19508.

    Article  CAS  PubMed  Google Scholar 

  90. Sos, M. L., et al. (2009). Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proceedings of the National Academy of Sciences of the United States of America, 106(43), 18351–18356.

    Article  CAS  PubMed  Google Scholar 

  91. Hoeflich, K. P., et al. (2009). In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clinical Cancer Research, 15(14), 4649–4664.

    Article  CAS  PubMed  Google Scholar 

  92. Torbett, N. E., et al. (2008). A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. Biochemical Journal, 415(1), 97–110.

    Article  CAS  PubMed  Google Scholar 

  93. F. Janku, A.M.T., I. Garrido- Laguna, D. S. Hong, A. Naing, G. S. Falchook, J. J. Wheler, S. Fu, S. A. Piha-Paul, R. Kurzrock (2010) PIK3CA, KRAS, and BRAF mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. In ASCO 2010 Meeting. Chicago: Journal of Clinical Oncology

  94. Ma, W. W., et al. (2009). [18F]fluorodeoxyglucose positron emission tomography correlates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy. Journal of Clinical Oncology, 27(16), 2697–2704.

    Article  CAS  PubMed  Google Scholar 

  95. Sabine, V. S., et al. (2010). Gene expression profiling of response to mTOR inhibitor everolimus in pre-operatively treated post-menopausal women with oestrogen receptor-positive breast cancer. Breast Cancer Research and Treatment, 122(2), 419–428.

    Article  CAS  PubMed  Google Scholar 

  96. Ozbay, T., et al. (2009). In vitro evaluation of pan-PI3-kinase inhibitor SF1126 in trastuzumab-sensitive and trastuzumab-resistant HER2-over-expressing breast cancer cells. Cancer Chemotherapy and Pharmacology, 65(4), 697–706.

    Article  PubMed  Google Scholar 

  97. Howes, A. L., et al. (2007). The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Molecular Cancer Therapeutics, 6(9), 2505–2514.

    Article  CAS  PubMed  Google Scholar 

  98. Garlich, J. R., et al. (2008). A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Research, 68(1), 206–215.

    Article  CAS  PubMed  Google Scholar 

  99. H. Burris, J.R., S. Sharma, R. S. Herbst, J. Tabernero, J. R. Infante, A. Silva, D. Demanse, W. Hackl, J. Baselga (2010) First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors. In ASCO 2010 Meeting. Journal of Clinical Oncology

  100. D. Sarker, R.K., K. E. Mazina, J. A. Ware, Y. Yan, M. Dresser, M. K. Derynck and J. De-Bono (2009) A phase I study evaluating the pharmacokinetics (PK) and pharmacodynamics (PD) of the oral pan-phosphoinositide-3 kinase (PI3K) inhibitor GDC-0941. In ASCO. Journal of Clinical Oncology

  101. J. Baselga, M.J.D.J., J. Rodon, H. A. Burris III, D. C. Birle, S. S. De Buck, D. Demanse, Q. C. Ru, M. Goldbrunner, J. C. Bendell (2010) A first-in-human phase I study of BKM120, an oral pan-class I PI3K inhibitor, in patients (pts) with advanced solid tumors. In ASCO 2010 Meeting. Journal of Clinical Oncology

  102. Rexer, B. N., Ghosh, R., & Arteaga, C. L. (2009). Inhibition of PI3K and MEK: it is all about combinations and biomarkers. Clinical Cancer Research, 15(14), 4518–4520.

    Article  CAS  PubMed  Google Scholar 

  103. Meric-Bernstam, F., & Gonzalez-Angulo, A. M. (2009). Targeting the mTOR signaling network for cancer therapy. Journal of Clinical Oncology, 27(13), 2278–2287.

    Article  CAS  PubMed  Google Scholar 

  104. Ellard, S. L., et al. (2009). Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND.163. Journal of Clinical Oncology, 27(27), 4536–4541.

    Article  CAS  PubMed  Google Scholar 

  105. Baselga, J., et al. (2009). Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. Journal of Clinical Oncology, 27(16), 2630–2637.

    Article  CAS  PubMed  Google Scholar 

  106. Chan, S., et al. (2005). Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. Journal of Clinical Oncology, 23(23), 5314–5322.

    Article  CAS  PubMed  Google Scholar 

  107. Chow LWC, S.Y., Jassem J, Baselga J, Hayes DF, Wolff AC, Hachemi S, Cincotta M, Yu BW, Kong S, Moore L (2006) Phase 3 study of temsirolimus with letrozole or letrozole alone in postmenopausal women with locally advanced or metastatic breast cancer. In San Antonio Breast Cancer Meeting. Breast Cancer Research and Treatment

  108. Chen CS, C.M., Imaoka RT, Svahn T, Guardino AE (2009) A Phase I Pilot Study of the Oral mTOR Inhibitor RAD001 in Combination with Capecitabine for Metastatic Breast Cancer. In San Antonio Breast Cancer Meeting.

  109. Cardoso F, D.V., Campone M, Massacesi C, Manlius C, Thevenaz P, Zhang Y, Jerusalem G, Sahmoud T, Andre F, Gianni L (2009) Everolimus (Afinitor®), Trastuzumab (H), and Paclitaxel (P) or Vinorelbine (V) in the Treatment of HER-2+ Metastatic Breast Cancer (MBC) Patients (Pts) Pre-Treated with Lapatinib-Containing Therapy: Pooled Analysis of 2 Phase I Studies. In San Antonio Breast Cancer Meeting.

  110. G. H. Jerusalem, V.D., F. Cardoso, J. Bergh, A. Fasolo, A. Rorive, C. Manlius, I. Pylvaenaeinen, T. Sahmoud, L. Gianni (2008) Multicenter phase I clinical trial of daily and weekly RAD001 in combination with vinorelbine and trastuzumab in patients with HER2-overexpressing metastatic breast cancer with prior resistance to trastuzumab. In ASCO Annual Meeting. Journal of Clinical Oncology

  111. M. Campone, R.O.R., S. Hurvitz, M. Naughton, C. Manlius, L. Vittori, P. Mukhopadhyay, C. Massacesi, T. Sahmoud, F. André (2009) Everolimus plus weekly paclitaxel and trastuzumab in patients (pts) with HER-2+ metastatic breast cancer (MBC) with prior resistance to trastuzumab: a phase I clinical trial. In San Antonio Breast Cancer Meeting.

  112. P. H. Morrow, G.M.W., D. J. Booser, J. A. Moore, P. R. Flores, I. E. Krop, E. P. Winer, G. N. Hortobagyi, D. Yu, F. J. Esteva (2010) Phase I/II trial of everolimus (RAD001) and trastuzumab in patients with trastuzumab-resistant, HER2-overexpressing breast cancer. In ASCO 2010 Meeting. Journal of Clinical Oncology

  113. F. Dalenc, M.C., P. Hupperets, R. O’Regan, C. Manlius, L. Vittori, P. Mukhopadhyay, C. Massacesi, T. Sahmoud, F. Andre (2010) Everolimus in combination with weekly paclitaxel and trastuzumab in patients (pts) with HER2-overexpressing metastatic breast cancer (MBC) with prior resistance to trastuzumab and taxanes: A multicenter phase II clinical trial. In ASCO 2010 Meeting. Journal of Clinical Oncology

  114. D. Yardley, M.S., I. Ray-Coquard, B. Melichar, L. Hart, V. Dieras, M. Barve, A. Melnyk, A. Richard, D. Dorer, C. Turner, P. Dodion (2009) Ridaforolimus (AP23573; MK-8669) in combination with trastuzumab for patients with HER2-positive trastuzumab-refractory metastatic breast cancer: a multicenter phase 2 clinical trial. In San Antonio Breast Cancer Meeting.

Download references

Acknowledgments

TRANSBIG traineeship programme to Carlos A. Castaneda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Castaneda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castaneda, C.A., Cortes-Funes, H., Gomez, H.L. et al. The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer. Cancer Metastasis Rev 29, 751–759 (2010). https://doi.org/10.1007/s10555-010-9261-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9261-0

Keywords

Navigation