Skip to main content

Advertisement

Log in

The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Chemotherapy resistance is an important problem often encountered during the course of breast cancer treatment. In order to design rational and efficacious therapies, the molecular mechanisms used by cells to develop resistance must be investigated. One mechanism employed by cancer cells is to alter cell signaling. This review examines the role of mitogen-activated protein kinases (MAPKs) and their endogenous negative regulators, mitogen-activated protein kinase phosphatases (MKPs), in chemotherapy resistance in breast cancer. MAPK signaling is activated in response to both growth factors and cellular stress. MKPs dephosphorylate MAPKs and are part of the dual-specificity family of phosphatases. MAPKs have been shown to be involved in resistance to tamoxifen, and MKPs have been linked to resistance to treatment with doxorubicin, mechlorethamine, paclitaxel, proteasome inhibitors, and oxidative-stress-induced cell death in breast cancer. The role of MKPs in tamoxifen resistance and the elucidation of the mechanisms involved with resistance to standard chemotherapy agents need to be investigated further. Growing evidence suggests that modulating MKP-1 activity could be a viable option to make breast cancer chemotherapy more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. National Cancer Institute. (2009). Cancer topics: Breast cancer. http://www.cancer.gov/cancertopics/types/breast.

  2. Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752.

    Article  PubMed  CAS  Google Scholar 

  3. Gutierrez, M. C., Detre, S., Johnston, S., Mohsin, S. K., Shou, J. N., Allred, D. C., et al. (2005). Molecular changes in tamoxifen-resistant breast cancer: Relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. Journal of Clinical Oncology, 23(11), 2469–2476.

    Article  PubMed  CAS  Google Scholar 

  4. Riggins, R. B., Schrecengost, R. S., Guerrero, M. S., & Bouton, A. H. (2007). Pathways to tamoxifen resistance. Cancer Letters, 256(1), 1–24.

    Article  PubMed  CAS  Google Scholar 

  5. Sporn, M. B., & Lipmann, S. M. (2003). Chemoprevention of cancer. In D. W. Kufe, R. E. Pollack, R. R. Weichselbaum, R. C. Bast, T. S. Gansler, J. F. Holland, et al. (Eds.), Cancer medicine (Vol. 6). BC Decker: Hamilton.

    Google Scholar 

  6. Jordan, V. C. (2003). Estrogens and antiestrogens. In D. W. Kufe, R. E. Pollack, R. R. Weichselbaum, R. C. Bast, T. S. Gansler, J. F. Holland, et al. (Eds.), Cancer medicine (Vol. 6). Hamilton: BC Decker.

    Google Scholar 

  7. Kurebayashi, J. (2005). Resistance to endocrine therapy in breast cancer. Cancer Chemotherapy and Pharmacology, 56(Suppl 1), 39–46.

    Article  PubMed  CAS  Google Scholar 

  8. Coley, H. M. (2008). Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treatment Reviews, 34(4), 378–390.

    Article  PubMed  CAS  Google Scholar 

  9. Bonneterre, J., Dieras, V., Tubiana-Hulin, M., Bougnoux, P., Bonneterre, M. E., Delozier, T., et al. (2004). Phase II multicentre randomised study of docetaxel plus epirubicin vs 5-fluorouracil plus epirubicin and cyclophosphamide in metastatic breast cancer. British Journal of Cancer, 91(8), 1466–1471.

    PubMed  CAS  Google Scholar 

  10. Vassilomanolakis, M., Koumakis, G., Barbounis, V., Demiri, M., Panopoulos, C., Chrissohoou, M., et al. (2005). First-line chemotherapy with docetaxel and cisplatin in metastatic breast cancer. Breast, 14(2), 136–141.

    Article  PubMed  CAS  Google Scholar 

  11. Ishikawa, T., Shimizu, S., Inaba, M., Asaga, T., Katayama, K., Fukuda, M., et al. (2004). A multicenter phase II study of docetaxel 60 mg/m2 as first-line chemotherapy in patients with advanced or recurrent breast cancer. Breast Cancer, 11(4), 374–379.

    Article  PubMed  Google Scholar 

  12. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    Article  PubMed  CAS  Google Scholar 

  13. Boutros, T., Chevet, E., & Metrakos, P. (2008). Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacological Reviews, 60(3), 261–310.

    Article  PubMed  CAS  Google Scholar 

  14. Wu, G. S. (2007). Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer. Cancer and Metastasis Reviews, 26(3–4), 579–585.

    Article  PubMed  CAS  Google Scholar 

  15. Keyse, S. M. (2008). Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer and Metastasis Reviews, 27(2), 253–261.

    Article  PubMed  CAS  Google Scholar 

  16. McCubrey, J. A., Steelman, L. S., Abrams, S. L., Lee, J. T., Chang, F., Bertrand, F. E., et al. (2006). Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Advances in Enzyme Regulation, 46, 249–279.

    Article  PubMed  CAS  Google Scholar 

  17. Cui, Y., Parra, I., Zhang, M., Hilsenbeck, S. G., Tsimelzon, A., Furukawa, T., et al. (2006). Elevated expression of mitogen-activated protein kinase phosphatase 3 in breast tumors: A mechanism of tamoxifen resistance. Cancer Research, 66(11), 5950–5959.

    Article  PubMed  CAS  Google Scholar 

  18. Fan, M., Yan, P. S., Hartman-Frey, C., Chen, L., Paik, H., Oyer, S. L., et al. (2006). Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Research, 66(24), 11954–11966.

    Article  PubMed  CAS  Google Scholar 

  19. Kurokawa, H., Lenferink, A. E., Simpson, J. F., Pisacane, P. I., Sliwkowski, M. X., Forbes, J. T., et al. (2000). Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Research, 60(20), 5887–5894.

    PubMed  CAS  Google Scholar 

  20. Massarweh, S., Osborne, C. K., Creighton, C. J., Qin, L., Tsimelzon, A., Huang, S., et al. (2008). Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Research, 68(3), 826–833.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, J., Zhou, J. Y., & Wu, G. S. (2007). ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells. Cancer Research, 67(24), 11933–11941.

    Article  PubMed  CAS  Google Scholar 

  22. Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Research, 66(9), 4888–4894.

    Article  PubMed  CAS  Google Scholar 

  23. NCBI. (2009). Dual specificity phosphatase 1 [Homo sapiens]. http://www.ncbi.nlm.nih.gov/protein/4758204?itemid=10&report=gpwithparts. Accessed 8 Apr 2009.

  24. Hirsch, D. D., & Stork, P. J. (1997). Mitogen-activated protein kinase phosphatases inactivate stress-activated protein kinase pathways in vivo. Journal of Biological Chemistry, 272(7), 4568–4575.

    Article  PubMed  CAS  Google Scholar 

  25. Dickinson, R. J., & Keyse, S. M. (2006). Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science, 119(Pt 22), 4607–4615.

    Article  PubMed  CAS  Google Scholar 

  26. Keyse, S. M., & Ginsburg, M. (1993). Amino acid sequence similarity between CL100, a dual-specificity MAP kinase phosphatase and cdc25. Trends in Biochemical Sciences, 18(10), 377–378.

    Article  PubMed  CAS  Google Scholar 

  27. Camps, M., Nichols, A., & Arkinstall, S. (2000). Dual specificity phosphatases: A gene family for control of MAP kinase function. FASEB Journal, 14(1), 6–16.

    PubMed  CAS  Google Scholar 

  28. Li, M., Zhou, J. Y., Ge, Y., Matherly, L. H., & Wu, G. S. (2003). The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. Journal of Biological Chemistry, 278(42), 41059–41068.

    Article  PubMed  CAS  Google Scholar 

  29. Liu, Y. X., Wang, J., Guo, J., Wu, J., Lieberman, H. B., & Yin, Y. (2008). DUSP1 is controlled by p53 during the cellular response to oxidative stress. Molecular Cancer Research, 6(4), 624–633.

    Article  PubMed  CAS  Google Scholar 

  30. Cleator, S., Heller, W., & Coombes, R. C. (2007). Triple-negative breast cancer: Therapeutic options. Lancet Oncology, 8(3), 235–244.

    Article  PubMed  Google Scholar 

  31. Kang, S. P., Martel, M., & Harris, L. N. (2008). Triple negative breast cancer: Current understanding of biology and treatment options. Current Opinion in Obstetrics and Gynecology, 20(1), 40–46.

    Article  PubMed  Google Scholar 

  32. Stockmans, G., Deraedt, K., Wildiers, H., Moerman, P., & Paridaens, R. (2008). Triple-negative breast cancer. Current Opinion in Oncology, 20(6), 614–620.

    Article  PubMed  Google Scholar 

  33. Carey, L. A., Dees, E. C., Sawyer, L., Gatti, L., Moore, D. T., Collichio, F., et al. (2007). The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clinical Cancer Research, 13(8), 2329–2334.

    Article  PubMed  CAS  Google Scholar 

  34. Reis-Filho, J. S., & Tutt, A. N. (2008). Triple negative tumours: A critical review. Histopathology, 52(1), 108–118.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, Z., Xu, J., Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Research, 66(17), 8870–8877.

    Article  PubMed  CAS  Google Scholar 

  36. Wang, H. Y., Cheng, Z., & Malbon, C. C. (2003). Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Letters, 191(2), 229–237.

    Article  PubMed  CAS  Google Scholar 

  37. Small, G. W., Shi, Y. Y., Higgins, L. S., & Orlowski, R. Z. (2007). Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Research, 67(9), 4459–4466.

    Article  PubMed  CAS  Google Scholar 

  38. Small, G. W., Somasundaram, S., Moore, D. T., Shi, Y. Y., & Orlowski, R. Z. (2003). Repression of mitogen-activated protein kinase (MAPK) phosphatase-1 by anthracyclines contributes to their antiapoptotic activation of p44/42-MAPK. Journal of Pharmacology and Experimental Therapeutics, 307(3), 861–869.

    Article  PubMed  CAS  Google Scholar 

  39. Rojo, F., Gonzalez-Navarrete, I., Bragado, R., Dalmases, A., Menendez, S., Cortes-Sempere, M., et al. (2009). Mitogen-activated protein kinase phosphatase-1 in human breast cancer independently predicts prognosis and is repressed by doxorubicin. Clinical Cancer Research, 15(10), 3530–3539.

    Article  PubMed  CAS  Google Scholar 

  40. Orlowski, R. Z., Small, G. W., & Shi, Y. Y. (2002). Evidence that inhibition of p44/42 mitogen-activated protein kinase signaling is a factor in proteasome inhibitor-mediated apoptosis. Journal of Biological Chemistry, 277(31), 27864–27871.

    Article  PubMed  CAS  Google Scholar 

  41. Small, G. W., Shi, Y. Y., Edmund, N. A., Somasundaram, S., Moore, D. T., & Orlowski, R. Z. (2004). Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an antiapoptotic role. Molecular Pharmacology, 66(6), 1478–1490.

    Article  PubMed  CAS  Google Scholar 

  42. Shi, Y. Y., Small, G. W., & Orlowski, R. Z. (2006). Proteasome inhibitors induce a p38 mitogen-activated protein kinase (MAPK)-dependent anti-apoptotic program involving MAPK phosphatase-1 and Akt in models of breast cancer. Breast Cancer Research and Treatment, 100(1), 33–47.

    Article  PubMed  CAS  Google Scholar 

  43. Wu, W., Pew, T., Zou, M., Pang, D., & Conzen, S. D. (2005). Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. Journal of Biological Chemistry, 280(6), 4117–4124.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Apologies are extended to those colleagues whose work could not be cited due to space limitations.

Financial support: Kelly K. Haagenson: Ruth L. Kirschstein National Research Service Award T32-CA009531. Gen Sheng Wu: National Institutes of Health Grant R01CA100073

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen Sheng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haagenson, K.K., Wu, G.S. The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment. Cancer Metastasis Rev 29, 143–149 (2010). https://doi.org/10.1007/s10555-010-9208-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9208-5

Keywords

Navigation