Skip to main content

Advertisement

Log in

Therapeutic targets in melanoma: MAPKinase pathway

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Recent progress in our understanding of the genetic alterations that occur in the pathogenesis of melanoma provides exciting opportunities for therapy. The most important signaling pathways in melanoma lie downstream of NRAS: the RAS-BRAF-MAPK pathway. A great deal of attention has been focused on the high mutation rate in the BRAF oncogene, which approaches 60%, because BRAF itself is an appealing drug substrate and because of the central contribution of BRAF function to melanoma development that the mutation rate signifies. Agents that specifically target BRAF, such as sorafenib, as well as new molecules that function both upstream and downstream of BRAF, are being actively investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Talpaz M, Shah NP, Kantarjian H, et al.: Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006, 354:2531–2541.

    Article  PubMed  CAS  Google Scholar 

  2. Demetri GD: Targeting the molecular pathophysiology of gastrointestinal stromal tumors with imatinib. Mechanisms, successes, and challenges to rational drug development. Hematol Oncol Clin North Am 2002, 16:1115–1124.

    Article  PubMed  Google Scholar 

  3. Haluska FG, Tsao H, Wu H, et al.: Genetic alterations in signaling pathways in melanoma. Clin Cancer Res 2006, 12:2301s-2307s.

    Article  PubMed  CAS  Google Scholar 

  4. Baccarini M: An old kinase on a new path: Raf and apoptosis. Cell Death Differ 2002, 9:783–785.

    Article  PubMed  CAS  Google Scholar 

  5. Davies H, Bignell GR, Cox C, et al.: Mutations of the BRAF gene in human cancer. Nature 2002, 417:949–954. The first demonstration of the importance of BRAF mutation in melanoma.

    Article  PubMed  CAS  Google Scholar 

  6. Pollock PM, Harper UL, Hansen KS, et al.: High frequency of BRAF mutations in nevi. Nat Genet 2003, 33:19–20. The surprising finding that nevi carry BRAF mutations just like melanomas.

    Article  PubMed  CAS  Google Scholar 

  7. Michaloglou C, Vredeveld LC, Soengas MS, et al.: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005, 436:720–724. Contribution of BRAF and p16 concurrent mutations to melanoma.

    Article  PubMed  CAS  Google Scholar 

  8. Tsao H, Zhang X, Fowlkes K, Haluska FG: Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res 2000, 60:1800–1804.

    PubMed  CAS  Google Scholar 

  9. Chin L, Pomerantz J, Polsky D, et al.: Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 1997, 11:2822–2834.

    PubMed  CAS  Google Scholar 

  10. Tsao H, Zhang X, Benoit E, Haluska FG: Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene 1998, 16:3397–3402.

    Article  PubMed  CAS  Google Scholar 

  11. Tsao H, Goel V, Wu H, et al.: Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 2004, 122:337–341.

    Article  PubMed  CAS  Google Scholar 

  12. Goel VK, Lazar AJ, Warneke CL, et al.: Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol 2006, 126:154–160.

    Article  PubMed  CAS  Google Scholar 

  13. Curtin JA, Fridlyand J, Kageshita T, et al.: Distinct sets of genetic alterations in melanoma. N Engl J Med 2005, 353:2135–2147. An important contribution to our understanding that melanoma is genetically heterogeneous and the association of BRAF alteration with specific melanoma histologic subtypes.

    Article  PubMed  CAS  Google Scholar 

  14. Lang J, MacKie RM: Prevalence of exon 15 BRAF mutations in primary melanoma of the superficial spreading, nodular, acral, and lentigo maligna subtypes. J Invest Dermatol 2005, 125:575–579.

    Article  PubMed  CAS  Google Scholar 

  15. Sensi M, Nicolini G, Petti C, et al.: Mutually exclusive NRAS(Q61R) and BRAF(V600E) mutations at the singlecell level in the same human melanoma. Oncogene 2006, 25:3357–3364.

    Article  PubMed  CAS  Google Scholar 

  16. Chin L, Tam A, Pomerantz J, et al.: Essential role for oncogenic Ras in tumour maintenance. Nature 1999, 400:468–472.

    Article  PubMed  CAS  Google Scholar 

  17. Eskandarpour M, Kiaii S, Zhu C, et al.: Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int J Cancer 2005, 115:65–73.

    Article  PubMed  CAS  Google Scholar 

  18. Hoeflich KP, Gray DC, Eby MT, et al.: Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res 2006, 66:999–1006. These authors report generation of a preclinical in vivo model for BRAF inhibition; has important therapeutic implications.

    Article  PubMed  CAS  Google Scholar 

  19. Lynch TJ, Bell DW, Sordella R, et al.: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004, 350:2129–2139.

    Article  PubMed  CAS  Google Scholar 

  20. Yeh AH, Bohula EA, Macaulay VM: Human melanoma cells expressing V600E B-RAF are susceptible to IGF1R targeting by small interfering RNAs. Oncogene 2006 May 22; [Epub ahead of print].

  21. McGill GG, Haq R, Nishimura EK, Fisher DE: c-Met expression is regulated by Mitf in the melanocyte lineage. J Biol Chem 2006, 281:10365–10373.

    Article  PubMed  CAS  Google Scholar 

  22. Garraway LA, Widlund HR, Rubin MA, et al.: Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005, 436:117–122.

    Article  PubMed  CAS  Google Scholar 

  23. Solit DB, Garraway LA, Pratilas CA, et al.: BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006, 439:358–362. important demonstration that BRAF mutation carries with it important implications for MAPK (in this case MEK) pathway therapy.

    Article  PubMed  CAS  Google Scholar 

  24. Ozen M, Medrano EE, Ittmann M: Inhibition of proliferation and survival of melanoma cells by adenoviral-mediated expression of dominant negative fibroblast growth factor receptor. Melanoma Res 2004, 14:13–21.

    Article  PubMed  CAS  Google Scholar 

  25. Willmore-Payne C, Holden JA, Hirschowitz J, Layfield LJ: BRAF and c-kit gene copy number in mutation-positive malignant melanoma. Hum Pathol 2006, 37:520–527.

    Article  PubMed  CAS  Google Scholar 

  26. Chun KH, Lee HY, Hassan K, et al.: Implication of protein kinase B/Akt and Bcl-2/Bcl-XL suppression by the farnesyl transferase inhibitor SCH66336 in apoptosis induction in squamous carcinoma cells. Cancer Res 2003, 63:4796–4800.

    PubMed  CAS  Google Scholar 

  27. Strumberg D, Richly H, Hilger RA, et al.: Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 2005, 23:965–972. se I trial showing sorafenib inhibits ERK phosphorylation in peripheral blood.

    Article  PubMed  CAS  Google Scholar 

  28. Awada A, Hendlisz A, Gil T, et al.: Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer 2005, 92:1855–1861.

    Article  PubMed  CAS  Google Scholar 

  29. Flaherty KT: Chemotherapy and targeted therapy combinations in advanced melanoma. Clin Cancer Res 2006, 12:2366s-2370s.

    Article  PubMed  CAS  Google Scholar 

  30. Flaherty KT, Lee RJ, Humphries R, O’Dwyer PJ, Schiller J: Phase I trial of BAY 43-9006 in combination with carboplatin (C) and paclitaxel (P) [abstract]. Proc ASCO 2003, 22:710. hough only an abstract, the first report of the findings on which the large ongoing randomized study of sorafenib in melanoma is based.

    Google Scholar 

  31. Amaravadi RK, Shcuchter LM, Kramer A, et al.: Preliminary results of a randomized phase II study comparing two schedules of temozolomide in combination with sorafenib in patients with advanced melanoma. J Clin Oncol 2006, 24:8009.

    Google Scholar 

  32. Escudier B, Szczylik C, Eisen T, et al.: Randomized phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC). J Clin Oncol 2005, 23:4510. study that led to the approval of sorafenib by the FDA for use in renal cancer. Its import for melanoma remains to be seen.

    Google Scholar 

  33. Sebolt-Leopold JS, Herrera R: Targeting the mitogenactivated protein kinase cascade to treat cancer. Nat Rev Cancer 2004, 4:937–947.

    Article  PubMed  CAS  Google Scholar 

  34. Rinehart J, Adjei AA, Lorusso PM, et al.: Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 2004, 22:4456–4462.

    Article  PubMed  CAS  Google Scholar 

  35. Thompson N, Lyons J: Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr Opin Pharmacol 2005, 5:350–356.

    Article  PubMed  CAS  Google Scholar 

  36. Peralba JM, DeGraffenried L, Friedrichs W, et al.: Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin Cancer Res 2003, 9:2887–2892.

    PubMed  CAS  Google Scholar 

  37. Garber K: Synthetic lethality: killing cancer with cancer. J Natl Cancer Inst 2002, 94:1666–1668.

    PubMed  Google Scholar 

  38. Grunwald V, DeGraffenried L, Russel D, et al.: Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res 2002, 62:6141–6145.

    PubMed  CAS  Google Scholar 

  39. Shi Y, Gera J, Hu L, et al.: Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 2002, 62:5027–5034.

    PubMed  CAS  Google Scholar 

  40. Hudes GR, Carducci M, Tomczak P, et al.: A phase 3, randomized, 3-arm study of temsirolimus (TEMSR) or interferon-alpha (IFN) or the combination of TEMSR + IFN in the treatment fo first-line, poor-risk patients with advanced renal cell carcinoma (adv RCC). J Clin Oncol 2006, 24:LBA4.

    Google Scholar 

  41. Margolin K, Longmate J, Baratta T, et al.: CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer 2005, 104:1045–1048.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank G. Haluska MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haluska, F.G., Ibrahim, N. Therapeutic targets in melanoma: MAPKinase pathway. Curr Oncol Rep 8, 400–405 (2006). https://doi.org/10.1007/s11912-006-0065-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-006-0065-x

Keywords

Navigation