Skip to main content

Advertisement

Log in

Pressure–volume relationship by pharmacological stress cardiovascular magnetic resonance

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The variation between rest and peak stress end-systolic pressure–volume relation (ΔESPVR) is an index of myocardial contractility, easily obtained during routine stress echocardiography and never tested during dipyridamole stress-cardiac magnetic resonance (CMR). We assessed the ΔESPVR index in patients with known/suspected coronary artery disease (CAD) who underwent dipyridamole stress-CMR. One-hundred consecutive patients (24 females, 63.76 ± 10.17 years) were considered. ESPVR index was evaluated at rest and stress from raw measurement of systolic arterial pressure and end-systolic volume by biplane Simpson’s method. The ΔESPVR index showed a good inter-operator reproducibility. Mean ΔESPVR index was 0.48 ± 1.45 mmHg/mL/m2. ΔESPVR index was significantly lower in males than in females. ΔESPVR index was not correlated to rest left ventricular end-diastolic volume index or ejection fraction. Forty-six of 85 patients had myocardial fibrosis detected by the late gadolinium enhancement technique and they showed significantly lower ΔESPVR values. An abnormal stress CMR was found in 25 patients and they showed significantly lower ΔESPVR values. During a mean follow-up of 56.34 ± 30.04 months, 24 cardiovascular events occurred. At receiver-operating characteristic curve analysis, a ΔESPVR < 0.02 mmHg/mL/m2 predicted the presence of future cardiac events with a sensitivity of 0.79 and a specificity of 0.68. The noninvasive assessment of the ΔESPVR index during a dipyridamole stress-CMR exam is feasible and reproducible. The ΔESPVR index was independent from rest LV dimensions and function and can be used for a comparative assessment of patients with different diseases. ΔESPVR index by CMR can be a useful and simple marker for additional prognostic stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Jellis CL, Jenkins C, Leano R, Martin JH, Marwick TH (2010) Reduced end-systolic pressure-volume ratio response to exercise: a marker of subclinical myocardial disease in type 2 diabetes. Circ Cardiovasc Imaging 3(4):443–449

    Article  PubMed  Google Scholar 

  2. Slutsky R, Karliner J, Gerber K, Battler A, Froelicher V, Gregoratos G, Peterson K, Ashburn W (1980) Peak systolic blood pressure/end-systolic volume ratio: assessment at rest and during exercise in normal subjects and patients with coronary heart disease. Am J Cardiol 46(5):813–820

    Article  CAS  PubMed  Google Scholar 

  3. Bombardini T, Galderisi M, Agricola E, Coppola V, Mottola G, Picano E (2008) Negative stress echo: further prognostic stratification with assessment of pressure-volume relation. Int J Cardiol 126(2):258–267

    Article  CAS  PubMed  Google Scholar 

  4. Bombardini T, Correia MJ, Cicerone C, Agricola E, Ripoli A, Picano E (2003) Force-frequency relationship in the echocardiography laboratory: a noninvasive assessment of Bowditch treppe? J Am Soc Echocardiogr 16(6):646–655

    Article  PubMed  Google Scholar 

  5. Bombardini T, Mulieri LA, Salvadori S, Costantino MF, Scali MC, Marzilli M, Picano E (2017) Pressure-volume relationship in the stress-echocardiography laboratory: does (left ventricular end-diastolic) size matter? Rev Esp Cardiol (Engl Ed) 70(2):96–104

    Article  PubMed  Google Scholar 

  6. Grosu A, Bombardini T, Senni M, Duino V, Gori M, Picano E (2005) End-systolic pressure/volume relationship during dobutamine stress echo: a prognostically useful non-invasive index of left ventricular contractility. Eur Heart J 26(22):2404–2412

    Article  PubMed  Google Scholar 

  7. Bombardini T, Agrusta M, Natsvlishvili N, Solimene F, Pap R, Coltorti F, Varga A, Mottola G, Picano E (2005) Noninvasive assessment of left ventricular contractility by pacemaker stress echocardiography. Eur J Heart Fail 7(2):173–181

    Article  PubMed  Google Scholar 

  8. Agricola E, Meris A, Oppizzi M, Bombardini T, Pisani M, Fragasso G, Margonato A (2008) Rest and stress echocardiographic predictors of prognosis in patients with left ventricular dysfunction and functional mitral regurgitation. Int J Cardiol 124(2):247–249

    Article  PubMed  Google Scholar 

  9. Otasevic P, Popovic ZB, Vasiljevic JD, Vidakovic R, Pratali L, Vlahovic A, Neskovic AN (2005) Relation of myocardial histomorphometric features and left ventricular contractile reserve assessed by high-dose dobutamine stress echocardiography in patients with idiopathic dilated cardiomyopathy. Eur J Heart Fail 7(1):49–56

    Article  PubMed  Google Scholar 

  10. Bombardini T, Costantino MF, Sicari R, Ciampi Q, Pratali L, Picano E (2013) End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echocardiography. Biomed Res Int 2013:235194

    Article  PubMed  PubMed Central  Google Scholar 

  11. Foley JR, Plein S, Greenwood JP (2017) Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques. World J Cardiol 9(2):92–108

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karamitsos TD, Hudsmith LE, Selvanayagam JB, Neubauer S, Francis JM (2007) Operator induced variability in left ventricular measurements with cardiovascular magnetic resonance is improved after training. J Cardiovasc Magn Reson 9(5):777–783

    Article  PubMed  Google Scholar 

  13. Sharma R, Pellerin D (2009) Stress echocardiogaphy: a useful test for assessing cardiac risk in diabetes. Vasc Health Risk Manag 5(1):1–7

    PubMed  PubMed Central  Google Scholar 

  14. Gebker R, Jahnke C, Manka R, Hamdan A, Schnackenburg B, Fleck E, Paetsch I (2008) Additional value of myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of coronary artery disease. Circ Cardiovasc Imaging 1(2):122–130

    Article  PubMed  Google Scholar 

  15. Lubbers DD, Janssen CH, Kuijpers D, van Dijkman PR, Overbosch J, Willems TP, Oudkerk M (2008) The additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress cardiac MRI for the detection of myocardial ischemia. Int J Cardiovasc Imaging 24(1):69–76

    Article  PubMed  Google Scholar 

  16. Chotenimitkhun R, Hundley WG (2011) Pharmacological stress cardiovascular magnetic resonance. Postgrad Med 123(3):162–170

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jekic M, Foster EL, Ballinger MR, Raman SV, Simonetti OP (2008) Cardiac function and myocardial perfusion immediately following maximal treadmill exercise inside the MRI room. J Cardiovasc Magn Reson 10:3

    Article  PubMed  PubMed Central  Google Scholar 

  18. Habert P, Bentatou Z, Aldebert P, Finas M, Bartoli A, Bal L, Lalande A, Rapacchi S, Guye M, Kober F, Bernard M, Jacquier A (2018) Exercise stress CMR reveals reduced aortic distensibility and impaired right-ventricular adaptation to exercise in patients with repaired tetralogy of Fallot. PLoS ONE 13(12):e0208749

    Article  PubMed  PubMed Central  Google Scholar 

  19. Le TT, Huang W, Bryant JA, Cook SA, Chin CW (2017) Stress cardiovascular magnetic resonance imaging: current and future perspectives. Expert Rev Cardiovasc Ther 15(3):181–189

    Article  CAS  PubMed  Google Scholar 

  20. Pingitore A, Aquaro GD, Lorenzoni V, Gallotta M, De Marchi D, Molinaro S, Cospite V, Passino C, Emdin M, Lombardi M, Lionetti V, L’Abbate A (2013) Influence of preload and afterload on stroke volume response to low-dose dobutamine stress in patients with non-ischemic heart failure: a cardiac MR study. Int J Cardiol 166(2):475–481

    Article  PubMed  Google Scholar 

  21. Claessen G, Schnell F, Bogaert J, Claeys M, Pattyn N, De Buck F, Dymarkowski S, Claus P, Carre F, Van Cleemput J, La Gerche A, Heidbuchel H (2018) Exercise cardiac magnetic resonance to differentiate athlete’s heart from structural heart disease. Eur Heart J Cardiovasc Imaging 19(9):1062–1070

    Article  PubMed  Google Scholar 

  22. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T, Di Mario C, Ferreira JR, Gersh BJ, Gitt AK, Hulot JS, Marx N, Opie LH, Pfisterer M, Prescott E, Ruschitzka F, Sabate M, Senior R, Taggart DP, van der Wall EE, Vrints CJ, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Knuuti J, Valgimigli M, Bueno H, Claeys MJ, Donner-Banzhoff N, Erol C, Frank H, Funck-Brentano C, Gaemperli O, Gonzalez-Juanatey JR, Hamilos M, Hasdai D, Husted S, James SK, Kervinen K, Kolh P, Kristensen SD, Lancellotti P, Maggioni AP, Piepoli MF, Pries AR, Romeo F, Ryden L, Simoons ML, Sirnes PA, Steg PG, Timmis A, Wijns W, Windecker S, Yildirir A, Zamorano JL (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34(38):2949–3003

    Article  PubMed  Google Scholar 

  23. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E (2020) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 22(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aquaro GD, Camastra G, Monti L, Lombardi M, Pepe A, Castelletti S, Maestrini V, Todiere G, Masci P, di Giovine G, Barison A, Dellegrottaglie S, Perazzolo Marra M, Pontone G, Di Bella G (2017) Reference values of cardiac volumes, dimensions, and new functional parameters by MR: A multicenter, multivendor study. J Magn Reson Imaging 45(4):1055–1067

    Article  PubMed  Google Scholar 

  25. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  26. Chowdhury SM, Butts RJ, Taylor CL, Bandisode VM, Chessa KS, Hlavacek AM, Shirali GS, Baker GH (2016) Validation of noninvasive measures of left ventricular mechanics in children: a simultaneous echocardiographic and conductance catheterization study. J Am Soc Echocardiogr 29(7):640–647

    Article  PubMed  PubMed Central  Google Scholar 

  27. Capasso JM, Remily RM, Smith RH, Sonnenblick EH (1983) Sex differences in myocardial contractility in the rat. Basic Res Cardiol 78(2):156–171

    Article  CAS  PubMed  Google Scholar 

  28. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71(4):549–574

    Article  CAS  PubMed  Google Scholar 

  30. Yarbrough WM, Mukherjee R, Stroud RE, Rivers WT, Oelsen JM, Dixon JA, Eckhouse SR, Ikonomidis JS, Zile MR, Spinale FG (2012) Progressive induction of left ventricular pressure overload in a large animal model elicits myocardial remodeling and a unique matrix signature. J Thorac Cardiovasc Surg 143(1):215–223

    Article  PubMed  Google Scholar 

  31. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7(1):30–37

    Article  PubMed  Google Scholar 

  32. Little WC, Cheng CP, Peterson T, Vinten-Johansen J (1988) Response of the left ventricular end-systolic pressure-volume relation in conscious dogs to a wide range of contractile states. Circulation 78(3):736–745

    Article  CAS  PubMed  Google Scholar 

  33. Sagawa K, Suga H, Shoukas AA, Bakalar KM (1977) End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol 40(5):748–753

    Article  CAS  PubMed  Google Scholar 

  34. Childs H, Ma L, Ma M, Clarke J, Cocker M, Green J, Strohm O, Friedrich MG (2011) Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex-vivo validation. J Cardiovasc Magn Reson 13:40

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bombardini T, Zoppe M, Ciampi Q, Cortigiani L, Agricola E, Salvadori S, Loni T, Pratali L, Picano E (2013) Myocardial contractility in the stress echo lab: from pathophysiological toy to clinical tool. Cardiovasc Ultrasound 11:41

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Claudia Santarlasci for skillful secretarial work and all patients for their cooperation.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Pepe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

All patients gave written informed consent at the time of the CMR.

Consent for publication

Not applicable.

Ethical approval

Our study complies with the Declaration of Helsinki and was approved by the local ethics committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meloni, A., De Luca, A., Nugara, C. et al. Pressure–volume relationship by pharmacological stress cardiovascular magnetic resonance. Int J Cardiovasc Imaging 38, 853–861 (2022). https://doi.org/10.1007/s10554-021-02464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02464-0

Keywords

Navigation