Skip to main content
Log in

The additive prognostic value of end-systolic pressure-volume relation by stress CMR in patients with known or suspected coronary artery disease

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The difference between rest and peak stress end-systolic pressure-volume relation (ΔESPVR) is an afterload-independent index of left ventricular (LV) contractility. We assessed the independent prognostic value of ΔESPVR index by dipyridamole stress-cardiovascular magnetic resonance (CMR) in patients with known/suspected coronary artery disease (CAD).

Methods

We considered 196 consecutive patients (62.74 ± 10.66 years, 49 females). Wall motion and perfusion abnormalities at rest and peak stress were analysed. Replacement myocardial fibrosis was detected by late gadolinium enhancement (LGE) technique. The ESPVR was evaluated at rest and peak stress from raw measurement of systolic arterial pressure and end-systolic volume by biplane Simpson’s method.

Results

A reduced ΔESPVR index (≤ 0.02 mmHg/mL/m2) was found in 88 (44.9%) patients and it was associated with a lower LV ejection fraction (EF) and with a higher frequency of abnormal stress CMR and myocardial fibrosis. During a mean follow-up of 53.17 ± 28.21 months, 50 (25.5%) cardiac events were recorded: 5 cardiac deaths, 17 revascularizations, one myocardial infarction, 23 hospitalisations for heart failure or unstable angina, and 4 ventricular arrhythmias. According to Cox regression analysis, diabetes, family history, LVEF, abnormal stress CMR, myocardial fibrosis, and reduced ΔESPVR were significant univariate prognosticators. In the multivariate analysis the independent predictors were ΔESPVR index ≤ 0.02 mmHg/mL/m2 (hazard ratio-HR = 2.58, P = 0.007), myocardial fibrosis (HR = 2.13, P = 0.036), and diabetes (HR = 2.33, P = 0.012).

Conclusion

ΔESPVR index by stress-CMR was independently associated with cardiac outcomes in patients with known/suspected CAD, in addition to replacement myocardial fibrosis and diabetes. Thus, the assessment of ΔESPVR index may be included into the standard stress-CMR exam to further stratify the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data underlying this article cannot be shared publicly due to privacy reasons. The data will be shared on reasonable request to the corresponding author.

References

  1. Bombardini T, Agrusta M, Natsvlishvili N, Solimene F, Pap R, Coltorti F, Varga A, Mottola G, Picano E (2005) Noninvasive assessment of left ventricular contractility by pacemaker stress echocardiography. Eur J Heart Fail 7(2):173–181

    Article  PubMed  Google Scholar 

  2. Bombardini T, Correia MJ, Cicerone C, Agricola E, Ripoli A, Picano E (2003) Force-frequency relationship in the echocardiography laboratory: a noninvasive assessment of Bowditch treppe? J Am Soc Echocardiogr 16(6):646–655

    Article  PubMed  Google Scholar 

  3. Bombardini T, Zoppe M, Ciampi Q, Cortigiani L, Agricola E, Salvadori S, Loni T, Pratali L, Picano E (2013) Myocardial contractility in the stress echo lab: from pathophysiological toy to clinical tool. Cardiovasc Ultrasound 11:41

    Article  PubMed  PubMed Central  Google Scholar 

  4. Otasevic P, Popovic ZB, Vasiljevic JD, Vidakovic R, Pratali L, Vlahovic A, Neskovic AN (2005) Relation of myocardial histomorphometric features and left ventricular contractile reserve assessed by high-dose dobutamine stress echocardiography in patients with idiopathic dilated cardiomyopathy. Eur J Heart Fail 7(1):49–56

    Article  PubMed  Google Scholar 

  5. Bombardini T, Gherardi S, Marraccini P, Schlueter MC, Sicari R, Picano E (2013) The incremental diagnostic value of coronary flow reserve and left ventricular elastance during high-dose dipyridamole stress echocardiography in patients with normal wall motion at rest. Int J Cardiol 168(2):1683–1684

    Article  PubMed  Google Scholar 

  6. Bombardini T, Costantino MF, Sicari R, Ciampi Q, Pratali L, Picano E (2013) End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echocardiography. Biomed Res Int 2013:235194

  7. Bombardini T, Galderisi M, Agricola E, Coppola V, Mottola G, Picano E (2008) Negative stress echo: further prognostic stratification with assessment of pressure-volume relation. Int J Cardiol 126(2):258–267

    Article  CAS  PubMed  Google Scholar 

  8. Grosu A, Bombardini T, Senni M, Duino V, Gori M, Picano E (2005) End-systolic pressure/volume relationship during dobutamine stress echo: a prognostically useful non-invasive index of left ventricular contractility. Eur Heart J 26(22):2404–2412

    Article  PubMed  Google Scholar 

  9. Bombardini T, Gherardi S, Arpesella G, Maccherini M, Serra W, Magnani G, Del Bene R, Picano E (2011) Favorable short-term outcome of transplanted hearts selected from marginal donors by pharmacological stress echocardiography. J Am Soc Echocardiogr 24(4):353–362

    Article  PubMed  Google Scholar 

  10. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, Prescott E, Storey RF, Deaton C, Cuisset T, Agewall S, Dickstein K, Edvardsen T, Escaned J, Gersh BJ, Svitil P, Gilard M, Hasdai D, Hatala R, Mahfoud F, Masip J, Muneretto C, Valgimigli M, Achenbach S, Bax JJ, Group ESD (2019) 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: the Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J 41(3):407–477

    Article  Google Scholar 

  11. Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, Schonberg SO, Debl K, Strohm O, Ahlstrom H, Dill T, Hoebel N, Simor T (2012) Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: the secondary endpoints of the multicenter multivendor MR-IMPACT II (magnetic resonance imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial). J Cardiovasc Magn Reson 14:61

    Article  PubMed  PubMed Central  Google Scholar 

  12. Greenwood JP, Motwani M, Maredia N, Brown JM, Everett CC, Nixon J, Bijsterveld P, Dickinson CJ, Ball SG, Plein S (2014) Comparison of cardiovascular magnetic resonance and single-photon emission computed tomography in women with suspected coronary artery disease from the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) trial. Circulation 129(10):1129–1138

    Article  PubMed  Google Scholar 

  13. Ahmad IG, Abdulla RK, Klem I, Margulis R, Ivanov A, Mohamed A, Judd RM, Borges-Neto S, Kim RJ, Heitner JF (2016) Comparison of stress cardiovascular magnetic resonance imaging (CMR) with stress nuclear perfusion for the diagnosis of coronary artery disease. J Nucl Cardiol 23(2):287–297

    Article  PubMed  Google Scholar 

  14. Mordi I, Stanton T, Carrick D, McClure J, Oldroyd K, Berry C, Tzemos N (2014) Comprehensive dobutamine stress CMR versus echocardiography in LBBB and suspected coronary artery disease. JACC Cardiovasc Imaging 7(5):490–498. https://doi.org/10.1016/j.jcmg.2014.01.012

    Article  PubMed  Google Scholar 

  15. Gargiulo P, Dellegrottaglie S, Bruzzese D, Savarese G, Scala O, Ruggiero D, D’Amore C, Paolillo S, Agostoni P, Bossone E, Soricelli A, Cuocolo A, Trimarco B, Perrone Filardi P (2013) The prognostic value of normal stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a meta-analysis. Circ Cardiovasc Imaging 6(4):574–582

    Article  PubMed  Google Scholar 

  16. Pontone G, Andreini D, Bertella E, Loguercio M, Guglielmo M, Baggiano A, Aquaro GD, Mushtaq S, Salerni S, Gripari P, Rossi C, Segurini C, Conte E, Beltrama V, Giovannardi M, Veglia F, Guaricci AI, Bartorelli AL, Agostoni P, Pepi M, Masci PG (2016) Prognostic value of dipyridamole stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a mid-term follow-up study. Eur Radiol 26(7):2155–2165

    Article  PubMed  Google Scholar 

  17. Karamitsos TD, Hudsmith LE, Selvanayagam JB, Neubauer S, Francis JM (2007) Operator induced variability in left ventricular measurements with cardiovascular magnetic resonance is improved after training. J Cardiovasc Magn Reson 9(5):777–783

    Article  PubMed  Google Scholar 

  18. Catalano O, Moro G, Mori A, Perotti M, Gualco A, Frascaroli M, Pesarin C, Napolitano C, Ntusi NAB, Priori SG (2018) Cardiac Magnetic Resonance in Stable Coronary Artery Disease: Added Prognostic Value to Conventional Risk Profiling. Biomed Res Int 2018:2806148

  19. Grigoratos C, Gueli I, Arendt CT, Leithner D, Meloni A, Nugara C, Barison A, Todiere G, Puntmann VO, Novo G, Pepe A, Emdin M, Nagel E, Aquaro GD (2020) Prevalence and prognostic impact of nonischemic late gadolinium enhancement in stress cardiac magnetic resonance. J Cardiovasc Med (Hagerstown) 21(12):980–985. https://doi.org/10.2459/jcm.0000000000001016

    Article  CAS  PubMed  Google Scholar 

  20. Meloni A, De Luca A, Nugara C, Vaccaro M, Cavallaro C, Cappelletto C, Barison A, Todiere G, Grigoratos C, Calvi V, Novo G, Grigioni F, Emdin M, Sinagra G, Pepe A (2021) Pressure-volume relationship by pharmacological stress cardiovascular magnetic resonance. Int J Cardiovasc Imaging Doi. https://doi.org/10.1007/s10554-021-02464-0

    Article  Google Scholar 

  21. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  22. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Katus HA, Lindahl B, Morrow DA, Clemmensen PM, Johanson P, Hod H, Underwood R, Bax JJ, Bonow RO, Pinto F, Gibbons RJ, Fox KA, Atar D, Newby LK, Galvani M, Hamm CW, Uretsky BF, Steg PG, Wijns W, Bassand JP, Menasché P, Ravkilde J, Ohman EM, Antman EM, Wallentin LC, Armstrong PW, Simoons ML, Januzzi JL, Nieminen MS, Gheorghiade M, Filippatos G, Luepker RV, Fortmann SP, Rosamond WD, Levy D, Wood D, Smith SC, Hu D, Lopez-Sendon JL, Robertson RM, Weaver D, Tendera M, Bove AA, Parkhomenko AN, Vasilieva EJ, Mendis S (2012) Third universal definition of myocardial infarction. Circulation 126(16):2020–2035

    Article  PubMed  Google Scholar 

  23. Cortigiani L, Bombardini T, Corbisiero A, Mazzoni A, Bovenzi F, Picano E (2009) The additive prognostic value of end-systolic pressure-volume relation in patients with diabetes mellitus having negative dobutamine stress echocardiography by wall motion criteria. Heart 95(17):1429–1435

    Article  CAS  PubMed  Google Scholar 

  24. Jellis CL, Jenkins C, Leano R, Martin JH, Marwick TH (2010) Reduced end-systolic pressure-volume ratio response to exercise: a marker of subclinical myocardial disease in type 2 diabetes. Circ Cardiovasc Imaging 3(4):443–449

    Article  PubMed  Google Scholar 

  25. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40(12):1795–1815

    Article  PubMed  PubMed Central  Google Scholar 

  26. Papadakis E, Kanakis M, Kataki A, Spandidos DA (2018) The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (review). Mol Med Rep 17(2):2089–2099

    CAS  PubMed  Google Scholar 

  27. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac Fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71(4):549–574

    Article  CAS  PubMed  Google Scholar 

  29. Yarbrough WM, Mukherjee R, Stroud RE, Rivers WT, Oelsen JM, Dixon JA, Eckhouse SR, Ikonomidis JS, Zile MR, Spinale FG (2012) Progressive induction of left ventricular pressure overload in a large animal model elicits myocardial remodeling and a unique matrix signature. J Thorac Cardiovasc Surg 143(1):215–223

    Article  PubMed  Google Scholar 

  30. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7(1):30–37

    Article  PubMed  Google Scholar 

  31. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ (2005) Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 26(15):1461–1474

    Article  PubMed  Google Scholar 

  32. Zemrak F, Petersen SE (2011) Late gadolinium enhancement CMR predicts adverse cardiovascular outcomes and mortality in patients with coronary artery disease: systematic review and meta-analysis. Prog Cardiovasc Dis 54(3):215–229

    Article  PubMed  Google Scholar 

  33. Cavender MA, Steg PG, Smith SC Jr., Eagle K, Ohman EM, Goto S, Kuder J, Im K, Wilson PW, Bhatt DL (2015) Impact of diabetes Mellitus on hospitalization for heart failure, Cardiovascular events, and death: outcomes at 4 years from the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Circulation 132(10):923–931

    Article  PubMed  Google Scholar 

  34. Kelle S, Chiribiri A, Vierecke J, Egnell C, Hamdan A, Jahnke C, Paetsch I, Wellnhofer E, Fleck E, Klein C, Gebker R (2011) Long-term prognostic value of dobutamine stress CMR. JACC Cardiovasc Imaging 4(2):161–172

    Article  PubMed  Google Scholar 

  35. Filev PD, Stillman AE (2019) Long-term prognostic value of stress perfusion Cardiovascular magnetic resonance imaging. Curr Treat Options Cardiovasc Med 21(10):51

    Article  PubMed  Google Scholar 

  36. Buckert D, Dewes P, Walcher T, Rottbauer W, Bernhardt P (2013) Intermediate-term prognostic value of reversible perfusion deficit diagnosed by adenosine CMR: a prospective follow-up study in a consecutive patient population. JACC Cardiovasc Imaging 6(1):56–63

    Article  PubMed  Google Scholar 

  37. Chen CH, Fetics B, Nevo E, Rochitte CE, Chiou KR, Ding PA, Kawaguchi M, Kass DA (2001) Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38(7):2028–2034. https://doi.org/10.1016/s0735-1097(01)01651-5

    Article  CAS  PubMed  Google Scholar 

  38. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E (2020) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 22(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aquaro GD, Camastra G, Monti L, Lombardi M, Pepe A, Castelletti S, Maestrini V, Todiere G, Masci P, di Giovine G, Barison A, Dellegrottaglie S, Perazzolo Marra M, Pontone G, Di Bella G (2017) Reference values of cardiac volumes, dimensions, and new functional parameters by MR: a multicenter, multivendor study. J Magn Reson Imaging 45(4):1055–1067

    Article  PubMed  Google Scholar 

  40. Childs H, Ma L, Ma M, Clarke J, Cocker M, Green J, Strohm O, Friedrich MG (2011) Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex-vivo validation. J Cardiovasc Magn Reson 13:40

    Article  PubMed  PubMed Central  Google Scholar 

  41. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD, Group ESD (2018) Fourth universal definition of myocardial infarction (2018). Eur Heart J 40(3):237–269

    Article  Google Scholar 

Download references

Acknowledgements

We thank Claudia Santarlasci for her skillful secretarial work and all patients for their cooperation.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.M.: conceptualization, formal analysis, investigation, methodology, writing - original draft; A.D.L.: formal analysis, writing - original draft; C.N., C.C., Ch. C.: data curation, writing - review & editing; A.B., G.T., C.G.: formal analysis, resources, writing - review & editing; G.N., F.G., M.E., G.S., S.M., E.Q., F.C.: supervision, writing - review & editing; A.P.: conceptualization, methodology, resources, supervision, writing - review & editing.

Corresponding author

Correspondence to Alessia Pepe.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Area Vasta Nord Ovest (Pisa)”.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meloni, A., De Luca, A., Nugara, C. et al. The additive prognostic value of end-systolic pressure-volume relation by stress CMR in patients with known or suspected coronary artery disease. Int J Cardiovasc Imaging (2024). https://doi.org/10.1007/s10554-024-03104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10554-024-03104-z

Keywords

Navigation