Skip to main content

Advertisement

Log in

Age-changes in right ventricular function–pulmonary circulation coupling: from pediatric to adult stage in 1899 healthy subjects. The RIGHT Heart International NETwork (RIGHT-NET)

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The present study analyzes age-specific changes in RV function and RV–PA coupling in a large cohort of apparently healthy subjects with a wide age-range, to identify reference values and to study the influence of clinical and echocardiographic cofactors. 1899 Consecutive healthy subjects underwent a standardized transthoracic echocardiographic examination. Tricuspid annular plane systolic excursion (TAPSE) and systolic pulmonary artery pressure (SPAP) were measured. Ventriculo-arterial coupling was then inferred from the TAPSE/SPAP ratio. A quantile regression analysis was used to estimate quantiles 0.05, 0.10, 0.50 (median), 0.90, and 0.95 of TAPSE, SPAP and TAPSE/SPAP. The association between age and each of these values was determined. The mean age of the group was 45.2 ± 18.5 years (range 1 to 102 years), 971 were males. SPAP increased with age, whereas TAPSE and TAPSE/SPAP ratio decreased. Upon multivariate modeling, the most significant positive associations for TAPSE were body surface area (BSA) driven by the pediatric group, stroke volume (SV), E/A and negatively heart rate and E/e′ ratio. SPAP was positively associated with increasing age, SV, E/A, E/e′ and negatively with BSA. TAPSE/SPAP ratio was negatively associated with age, female sex, and E/e′ and positively with BSA. A preserved relationship between TAPSE and SPAP was found across the different age groups. TAPSE, SPAP and TAPSE/SPAP demonstrate important trends and associations with advancing age, impaired diastolic function, affected by female sex and BSA However the relationship between TAPSE and SPAP is relatively well preserved across the age spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

BSA:

Body surface area

HR:

Heart rate

LV:

Left ventricle

MAP:

Mean arterial pressure

PA:

Pulmonary artery

RAP:

Right atrial pressure

RV:

Right ventricular

SPAP:

Systolic pulmonary artery pressure

SV:

Stroke volume

TTE:

Transthoracic echocardiographic

TAPSE:

Tricuspid annular plane systolic excursion

TRV:

Tricuspid regurgitation velocity

References

  1. Vriz O, Pirisi M, Habib E et al (2019) Age related structural and functional changes in left ventricular performance in healthy subjects: a 2D echocardiographic study. Int J Cardiovasc Imaging 35:2037–2047. https://doi.org/10.1007/s10554-019-01665-y

    Article  PubMed  Google Scholar 

  2. Mor-Avi V, Spencer K, Gorcsan J et al (2000) Normal values of regional left ventricular endocardial motion: multicenter color kinesis study. J Physiol Heart Circ Physiol 279:H2464–H2476. https://doi.org/10.1152/ajpheart.2000.279.5.H2464

    Article  CAS  Google Scholar 

  3. Ghio S, Guazzi M, Scardovi AB et al (2017) Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail 19:873–879. https://doi.org/10.1002/ejhf.664

    Article  CAS  PubMed  Google Scholar 

  4. Guazzi M, Dixon D, Labate V et al (2017) Contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: stratification of clinical phenotypes and outcomes. JACC Cardiovasc Imaging 10(10 Pt B):1211–1221. https://doi.org/10.1016/j.jcmg.2016.12.024

    Article  PubMed  Google Scholar 

  5. Tello K, Axmann J, Ghofrani AH et al (2018) Relevance of the TAPSE/PASP ratio in pulmonary arterial hypertension. J Cardiol 266:229–235. https://doi.org/10.1016/j.ijcard.2018.01.053

    Article  Google Scholar 

  6. Raymond RI, Hinderliter AL, Willis PW et al (2002) Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 39:1214–1219. https://doi.org/10.1016/s0735-1097(02)01744-8

    Article  PubMed  Google Scholar 

  7. Guo X, Lai J, Wang H et al (2019) Predictive value of non-invasive right ventricle to pulmonary circulation coupling in systemic lupus erythematosus patients with pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging 22:111–118. https://doi.org/10.1093/ehjci/jez311

    Article  Google Scholar 

  8. Gorter TM, Hoendermis ES, van Veldhuisen DJ et al (2016) Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail 18:1472–1487. https://doi.org/10.1002/ejhf.630

    Article  PubMed  Google Scholar 

  9. Faganello G, Doimo S, Di Nora C, Di Lenarda A (2017) Cardiac imaging in patients with acute or chronic heart failure. Minerva Cardioangiol 65:589–600. https://doi.org/10.23736/S0026-4725.17.04387-0

    Article  PubMed  Google Scholar 

  10. Ferrara F, Rudski LG, Vriz O et al (2016) Physiologic correlates of tricuspid annular plane systolic excursion in 1168 healthy subjects. Int J Cardiol 15(223):736–743. https://doi.org/10.1016/j.ijcard.2016.08.275

    Article  Google Scholar 

  11. D’Andrea A, Stanziola AA, Saggar R, et al, RIGHT Heart International NETwork (RIGHT-NET) Investigators (2019) Right ventricular functional reserve in early-stage idiopathic pulmonary fibrosis: an exercise two-dimensional speckle tracking Doppler echocardiography study. Chest 155:297–306. https://doi.org/10.1016/j.chest.2018.11.015

  12. McQuillan BM, Picard MH, Leavitt M, Weyman AE (2001) Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 104:2797–2802. https://doi.org/10.1161/hc4801.100076

    Article  CAS  PubMed  Google Scholar 

  13. Lam CSP, Borlaug BA, Kane GC, Enders TF, Rodeheffer RJ, Redfield MM (2009) Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation 119:2663–2670. https://doi.org/10.1161/CIRCULATIONAHA.108.838698

    Article  PubMed  PubMed Central  Google Scholar 

  14. Addetia K, Maffessanti F, Muraru D et al (2018) Morphologic analysis of the normal right ventricle using three-dimensional echocardiography-derived curvature indices. J Am Soc Echocardiogr 31:614–623. https://doi.org/10.1016/j.echo.2017.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kjaergaard J, Petersen CL, Kjaer A, Schaadt BK, Oh JK, Hassager C (2006) Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI. Eur J Echocardiogr 7:430–438. https://doi.org/10.1016/j.euje.2005.10.009

    Article  PubMed  Google Scholar 

  16. Guazzi M, Galiè N (2012) Pulmonary hypertension in left heart disease. Eur Respir J 21:338–346. https://doi.org/10.1183/09059180.00004612

    Article  Google Scholar 

  17. Valsangiacomo Buechel ER, Mertens LL (2012) Imaging the right heart: the use of integrated multimodality imaging. Eur Heart J 33:949–960. https://doi.org/10.1093/eurheartj/ehr490

    Article  PubMed  Google Scholar 

  18. Vriz O, Aboyans V, D’Andrea A et al (2014) Normal values of aortic root dimensions in healthy adults. Am J Cardiol 114:921–927. https://doi.org/10.1016/j.amjcard.2014.06.028

    Article  PubMed  Google Scholar 

  19. Ferrara F, Gargani L, Armstrong WF et al (2018) The Right Heart International Network (RIGHT-NET): rationale, objectives, methodology, and clinical implications. Heart Fail Clin 14:443–465. https://doi.org/10.1016/j.hfc.2018.03.010

    Article  PubMed  Google Scholar 

  20. Bossone E, Gargani L (2018) The RIGHT Heart International NETwork (RIGHT-NET): a road map through the right heart-pulmonary circulation unit. Heart Fail Clin 14:xix–xx. https://doi.org/10.1016/j.hfc.2018.05.001

    Article  PubMed  Google Scholar 

  21. Ferrara F, Gargani L, Contaldi C et al (2021) A multicentric quality-control study of exercise Doppler echocardiography of the right heart and the pulmonary circulation. The RIGHT Heart International NETwork (RIGHT-NET). Cardiovasc Ultrasound 19:9. https://doi.org/10.1186/s12947-021-00238-1

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  23. Marra AM, Naeije R, Ferrara F et al (2018) Reference ranges and determinants of tricuspid regurgitation velocity in healthy adults assessed by two-dimensional Doppler-echocardiography. Respiration 96:425–433. https://doi.org/10.1159/000490191

    Article  PubMed  Google Scholar 

  24. Guazzi M, Bandera F, Pelissero G et al (2013) Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol 305:H1373–H1381. https://doi.org/10.1152/ajpheart.00157.2013

    Article  CAS  PubMed  Google Scholar 

  25. Vonk Noordegraaf A, Westerhof BE, Westerhof N (2017) The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol 69:236–243. https://doi.org/10.1016/j.jacc.2016.10.047

    Article  PubMed  Google Scholar 

  26. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a Report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713. https://doi.org/10.1016/j.echo.2010.05.010

    Article  PubMed  Google Scholar 

  27. Uejima T, Dunstan FD, Arbustini E, et al, E-Tracking International Collaboration Group (ETIC) (2020) Age-specific reference values for carotid arterial stiffness estimated by ultrasonic wall tracking. J Hum Hypertens 34:214–222. https://doi.org/10.1038/s41371-019-0228-5.

  28. D’Andrea A, Naeije R, Grünig E et al (2014) Echocardiography of the pulmonary circulation and right ventricular function: exploring the physiologic spectrum in 1,480 normal subjects. Chest 145:1071–1078. https://doi.org/10.1378/chest.12-3079

    Article  PubMed  Google Scholar 

  29. Collis T, Devereux RB, Roman MJ et al (2001) Relations of stroke volume and cardiac output to body composition: the strong heart study. Circulation 103:820–825. https://doi.org/10.1161/01.cir.103.6.820

    Article  CAS  PubMed  Google Scholar 

  30. Modin D, Møgelvang R, Andersen DM, Biering-Sørensen T (2019) Right ventricular function evaluated by tricuspid annular plane systolic excursion predicts cardiovascular death in the general population. J Am Heart Assoc 8:e012197. https://doi.org/10.1161/JAHA.119.012197

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schmeisser A, Rauwolf T, Groscheck T, Kropf S, Luani B, Tanev I, Hansen M, Meißler S, Steendijk P, Braun-Dullaeus RC (2021) Pressure-volume loop validation of TAPSE/PASP for right ventricular arterial coupling in heart failure with pulmonary hypertension. Eur Heart J Cardiovasc Imaging 22:168–176. https://doi.org/10.1093/ehjci/jeaa285

    Article  PubMed  Google Scholar 

  32. Koestenberger M, Ravekes W, Everett AD et al (2009) Right ventricular function in infants, children and adolescents: reference values of the tricuspid annular plane systolic excursion (TAPSE) in 640 healthy patients and calculation of Z score values. J Am Soc Echocardiogr 22:715–719. https://doi.org/10.1016/j.echo.2009.03.026

    Article  PubMed  Google Scholar 

  33. Núñez-Gil I, Rubio MD, Cartón AJ et al (2011) Determination of normalized values of the tricuspid annular plane systolic excursion (TAPSE) in 405 Spanish children and adolescents. Rev Esp Cardiol 64:674–680. https://doi.org/10.1016/j.recesp.2011.04.006

    Article  PubMed  Google Scholar 

  34. Kawut SM, Lima JA, Barr RG et al (2011) Sex and race differences in right ventricular structure and function: the multi-ethnic study of atherosclerosis-right ventricle study. Circulation 123:2542–2551. https://doi.org/10.1161/CIRCULATIONAHA.110.985515

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ventetuolo CE, Praestgaard A, Palevsky HI, Klinger JR, Halpern SD, Kawut SM (2014) Sex and haemodynamics in pulmonary arterial hypertension. Eur Respir J 43:523–530. https://doi.org/10.1183/09031936.00027613

    Article  PubMed  Google Scholar 

  36. Ventetuolo CE, Ouyang P, Bluemke DA et al (2011) Sex hormones are associated with right ventricular structure and function: the MESA-right ventricle study. Am J Respir Crit Care Med 183:659–667. https://doi.org/10.1164/rccm.201007-1027OC

    Article  PubMed  Google Scholar 

  37. Park JH, Choi JO, Park SW, Cho GY, Oh JK, Lee JH, Seong IW (2018) Normal references of right ventricular strain values by two-dimensional strain echocardiography according to the age and gender. Int J Cardiovasc Imaging 34:177–183. https://doi.org/10.1007/s10554-017-1217-9

    Article  PubMed  Google Scholar 

  38. Guazzi M, Naeije R, Arena R et al (2015) Echocardiography of right ventriculoarterial coupling combined with cardiopulmonary exercise testing to predict outcome in heart failure. Chest 148:226–234. https://doi.org/10.1378/chest.14-2065

    Article  PubMed  Google Scholar 

  39. Nakagawa A, Yasumura Y, Yoshida C et al (2020) Prognostic importance of right ventricular-vascular uncoupling in acute decompensated heart failure with preserved ejection fraction. Circ Cardiovasc Imaging 13:e011430. https://doi.org/10.1161/CIRCIMAGING.120.011430

    Article  PubMed  Google Scholar 

  40. Forton K, Motoji Y, Caravita S, Faoro V, Naeije R (2021) Exercise stress echocardiography of the pulmonary circulation and right ventricular–arterial coupling in healthy adolescents. Eur Heart J Cardiovasc Imaging 22:688–694. https://doi.org/10.1093/ehjci/jeaa085

    Article  PubMed  Google Scholar 

Download references

Funding

No funding.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by OV, LG, PF, GV, EB and by all co-authors. The first draft of the manuscript was written by OV and LR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Olga Vriz.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethical approval

Clinicaltrials Gov Identifier: NCT03041337.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1S

Scatterplot of age vs SPAP at the top and TAPSE/SPAP at the bottom with quantile regression lines (modeled through natural cubic splines) of order 0.05, 0.10, 0.5, 0.90, 0.95, in males and females separately. Supplementary file1 (TIFF 186 kb)

Fig. 2S

Scatterplot of age vs TAPSE at the top and TAPSE/BSA at the bottom with quantile regression lines (modeled through natural cubic splines) of order 0.05, 0.10, 0.5, 0.90, 0.95, in males and females separately. Supplementary file2 (TIFF 83 kb)

Supplementary file3 (DOCX 82 kb)

Appendices

Appendix

The Right Heart International Network (RIGHT-NET) Investigators

Co-Principal Investigators Eduardo Bossone (A Cardarelli Hospital, Naples, Italy), Luna Gargani (Institute of Clinical Physiology, CNR, Pisa, Italy), Robert Naeije (Free University of Brussels, Brussels, Belgium).

Study Coordinator Francesco Ferrara (Cava de’ Tirreni and Amalfi Coast Division of Cardiology, University Hospital, Salerno, Italy).

Co-investigators William F. Armstrong, Theodore John Kolias (University of Michigan, Ann Arbor, USA); Eduardo Bossone, Rosangela Cocchia, Ciro Mauro, Chiara Sepe (A Cardarelli Hospital, Naples, Italy); Filippo Cademartiri, Brigida Ranieri, Andrea Salzano (IRCCS SDN, Diagnostic and Nuclear Research Institute, Naples, Italy); Francesco Capuano (Department of Industrial Engineering, Università di Napoli Federico II, Naples, Italy); Rodolfo Citro, Rossella Benvenga, Michele Bellino, Ilaria Radano (University Hospital of Salerno, Salerno, Italy); Antonio Cittadini, Alberto Marra, Roberta D’Assante, Salvatore Rega (Federico II University of Naples, Italy); Michele D’Alto, Paola Argiento (University of Campania “Luigi Vanvitelli”, Naples, Italy); Antonello D’Andrea (Umberto I° Hospital Nocera Inferiore, Italy); Francesco Ferrara, Carla Contaldi (Cava de’ Tirreni and Amalfi Coast Hospital, University Hospital of Salerno, Italy); Luna Gargani, Matteo Mazzola, Marco Raciti (Institute of Clinical Physiology, CNR, Pisa, Italy); Santo Dellegrottaglie (Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, Acerra – Naples, Italy); Nicola De Luca, Francesco Rozza, Valentina Russo (Hypertension Research Center, University Federico II of Naples, Italy); Giovanni Di Salvo (University of Padova, Italy; Imperial College, London, UK); Stefano Ghio, Stefania Guida (I.R.C.C.S. Policlinico San Matteo, Pavia, Italy); Ekkerard Grunig, Christina A. Eichstaedt (Heidelberg University Hospital, Germany); Marco Guazzi, Francesco Bandera, Valentina Labate (IRCCS Policlinico San Donato, University of Milan, Milan, Italy); André La Gerche (Baker Heart and Diabetes Institute, Melbourne, Australia); Giuseppe Limongelli, Giuseppe Pacileo, Marina Verrengia (University of Campania “Luigi Vanvitelli”, Naples, Italy); Jaroslaw D. Kasprzak, Karina Wierzbowska Drabik (Bieganski Hospital, Medical University of Lodz Poland); Gabor Kovacs, Philipp Douschan (Medical University of Graz, Graz, Austria); Antonella Moreo, Francesca Casadei, Benedetta De Chiara, (Niguarda Hospital, Milan, Italy); Robert Naeije (Free University of Brussels, Brussels, Belgium); Ellen Ostenfeld (Lund University, Skåne University Hospital, Sweden); Gianni Pedrizzetti (Department of Engineering and Architecture, University of Trieste); Francesco Pieri, Fabio Mori, Alberto Moggi-Pignone (Azienda Ospedaliero Universitaria Careggi, Florence, Italy); Lorenza Pratali (Institute of Clinical Physiology, CNR, Pisa, Italy); Nicola Pugliese (Department of Clinical and Experimental Medicine, University of Pisa, Italy); Rajan Saggar (UCLA Medical Center, Los Angeles, USA); Rajeev Saggar (Banner University Medical Center, Phoenix, Arizona, USA); Christine Selton-Suty, Olivier Huttin, Clément Venner (University Hospital of Nancy, France); Walter Serra, Francesco Tafuni (University Hospital of Parma, Italy); Anna Stanziola, Maria Martino, Giovanna Caccavo (Department of Respiratory Disease, Federico II University, Monaldi Hospital, Naples, Italy); István Szabó (University of Medicine and Pharmacy of Târgu Mureș, Târgu Mureș, Romania); Albert Varga, Gergely Agoston (University of Szeged, Szeged, Hungary); Darmien Voilliot (Centre Hospitalier Lunéville, France); Olga Vriz (Heart Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia); Mani Vannan, Sara Mobasseri, Peter Flueckiger, Shizhen Liu (Piedmont Heart Institute, USA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vriz, O., Veldman, G., Gargani, L. et al. Age-changes in right ventricular function–pulmonary circulation coupling: from pediatric to adult stage in 1899 healthy subjects. The RIGHT Heart International NETwork (RIGHT-NET). Int J Cardiovasc Imaging 37, 3399–3411 (2021). https://doi.org/10.1007/s10554-021-02330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02330-z

Keywords

Navigation