Skip to main content
Log in

Intracoronary compared with intravenous bolus tirofiban on the microvascular obstruction in patients with STEMI undergoing PCI: a cardiac MR study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To investigate the potential effect of intracoronary administration of the glycoprotein IIb/IIIa inhibitor tirofiban on the microvascular obstruction (MVO) assessed by cardiac magnetic resonance (CMR) imaging compared to the intravenous route in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention (PCI). Two hundred eight patients were randomized into two groups (tirofiban i.v. and tirofiban i.c.). CMR was completed within 3–7 days after ST-segment-elevation myocardial infarction. One hundred thirty-two patients had a follow-up CMR at 6 months after discharge. The primary end point was the CMR measurements including myocardium strain, myocardial perfusion index, final infarct size, prevalence and extent of MVO, and the change of left ventricular end-diastolic volume (LVEDV) at six months follow-up. The second endpoint was major adverse cardiovascular events (composite of all-cause death, nonfatal reinfarction and congestive heart failure) in one year. The MVO prevalence and extent [56% versus 36%, p = 0.004; 2.08 (IQR: 1.18–5.07) g versus 1.68 (IQR: 0.30–3.28) g, p = 0.041] showed a significant difference between the intravenous and intracoronary groups. Global left ventricular peak longitudinal strain was significantly different in intracoronary groups compared to intravenous groups, − 12.5 [IQR: − 13.4 to − 10.9] versus − 12.3 [IQR: − 13.4 to − 10.4], respectively (P = 0.042). Infarcted myocardial perfusion index was significantly different in intracoronary groups compared to intravenous groups, 0.11 [IQR: 0.08 to 0.15] versus 0.09 [IQR: 0.07 to 0.14], respectively (P = 0.026). Intracoronary tirofiban was associated with a higher change in LVEDV compared with intravenous group (− 10.2% [IQR: − 13.7% to − 2.6%] versus 1.3% [IQR: − 5.6% to 6.1%], p < 0.001). Intracoronary tirofiban application showed no benefit on the occurrence of major adverse cardiovascular events during follow-up compared to intravenous administration. This CMR study in ST-segment-elevation myocardial infarction patients showed a benefit in MVO and left ventricular remodeling for intracoronary tirofiban administration compared to intravenous administration in patients undergoing PCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kristensen SD, Aboyans V (2018) 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 39:119–177. https://doi.org/10.1093/eurheartj/ehx393

    Article  Google Scholar 

  2. Fan Z-X, Yang J (2015) The role of microRNAs in regulating myocardial ischemia reperfusion injury. Saudi Med J 36:787–793. https://doi.org/10.15537/smj.2015.7.11089

    Article  PubMed  PubMed Central  Google Scholar 

  3. Neri M, Riezzo I, Pascale N, Pomara C, Turillazzi E (2017) Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediators Inflamm 2017:7018393. https://doi.org/10.1155/2017/7018393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abbas A, Matthews GH, Brown IW, Shambrook JS, Peebles CR, Harden SP (2015) Cardiac MR assessment of microvascular obstruction. Br J Radiol 88:20140470. https://doi.org/10.1259/bjr.20140470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Waha S, Patel MR, Granger CB, Ohman EM, Maehara A, Eitel I, Ben-Yehuda O, Jenkins P, Thiele H, Stone GW (2017) Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur Heart J 38:3502–3510. https://doi.org/10.1093/eurheartj/ehx414

    Article  CAS  PubMed  Google Scholar 

  6. Elbadawi A, Elgendy IY, Megaly M, Ha LD, Mahmoud K, Alotaki E, Ogunbayo GO, Baig B, Abuzaid AS, Saad M, Depta JP (2017) Meta-analysis of randomized trials of intracoronary versus intravenous glycoprotein IIb/IIIa inhibitors in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol 120:1055–1061. https://doi.org/10.1016/j.amjcard.2017.06.040

    Article  PubMed  Google Scholar 

  7. Puddu PE, Iannetta L, Placanica A, Cuturello D, Schiariti M, Manfrini O (2016) The role of Glycoprotein IIb/IIIa inhibitors in acute coronary syndromes and the interference with anemia. Int J Cardiol 222:1091–1096. https://doi.org/10.1016/j.ijcard.2016.07.207

    Article  PubMed  Google Scholar 

  8. Wang HL, Xing SY, Dong PS, Han YH, Zhu JH, Lai LH, Zhao JF (2014) Safety and efficacy of intracoronary tirofiban administration in patients with serious thrombus burden and ST-elevation myocardial infarction undergoing percutaneous coronary intervention. Eur Rev Med Pharmacol Sci 18: 3690–3695, https://www.europeanreview.org/article/8172

  9. Eitel I, Desch S, Schindler K, Fuernau G, Schuler G, Thiele H (2011) Aborted myocardial infarction in intracoronary compared with standard intravenous abciximab administration in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. Int J Cardiol 153:21–25. https://doi.org/10.1016/j.ijcard.2010.08.027

    Article  PubMed  Google Scholar 

  10. Thiele H, Schindler K, Friedenberger J, Eitel I, Furnau G, Grebe E, Erbs S, Linke A, Mobius-Winkler S, Kivelitz D, Schuler G (2008) Intracoronary compared with intravenous bolus abciximab application in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: the randomized Leipzig immediate percutaneous coronary intervention abciximab IV versus IC in ST-elevation myocardial infarction trial. Circulation 118:49–57. https://doi.org/10.1161/circulationaha.107.747642

    Article  CAS  PubMed  Google Scholar 

  11. Eitel I, Wohrle J, Suenkel H, Meissner J, Kerber S, Lauer B, Pauschinger M, Birkemeyer R, Axthelm C, Zimmermann R, Neuhaus P, Brosteanu O, de Waha S, Desch S, Gutberlet M, Schuler G, Thiele H (2013) Intracoronary compared with intravenous bolus abciximab application during primary percutaneous coronary intervention in ST-segment elevation myocardial infarction: cardiac magnetic resonance substudy of the AIDA STEMI trial. J Am Coll Cardiol 61:1447–1454. https://doi.org/10.1016/j.jacc.2013.01.048

    Article  CAS  PubMed  Google Scholar 

  12. Thiele H, Wohrle J, Hambrecht R, Rittger H, Birkemeyer R, Lauer B, Neuhaus P, Brosteanu O, Sick P, Wiemer M, Kerber S, Kleinertz K, Eitel I, Desch S, Schuler G (2012) Intracoronary versus intravenous bolus abciximab during primary percutaneous coronary intervention in patients with acute ST-elevation myocardial infarction: a randomised trial. Lancet 379:923–931. https://doi.org/10.1016/s0140-6736(11)61872-2

    Article  CAS  PubMed  Google Scholar 

  13. Muser D, Castro SA, Santangeli P, Nucifora G (2018) Clinical applications of feature-tracking cardiac magnetic resonance imaging. World J Cardiol 10:210–221. https://doi.org/10.4330/wjc.v10.i11.210

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu D, Borlotti A, Viliani D, Jerosch-Herold M, Alkhalil M, De Maria GL, Fahrni G, Dawkins S, Wijesurendra R, Francis J, Ferreira V, Piechnik S, Robson MD, Banning A, Choudhury R, Neubauer S, Channon K, Kharbanda R, Dall'Armellina E (2017) CMR native T1 mapping allows differentiation of reversible versus irreversible myocardial damage in ST-segment-elevation myocardial infarction: an OxAMI study (oxford acute myocardial infarction). Circ Cardiovasc Imaging 10:e005986. https://doi.org/10.1161/circimaging.116.005986

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nucifora G, Muser D, Tioni C, Shah R, Selvanayagam J (2018) Prognostic value of myocardial deformation imaging by cardiac magnetic resonance feature-tracking in patients with a first ST-segment elevation myocardial infarction. Int J Cardiol 15:387–391. https://doi.org/10.1016/j.ijcard.2018.05.082

    Article  Google Scholar 

  16. Eitel I, Stiermaier T, Lange T, Rommel KP, Koschalka A, Kowallick JT, Lotz J, Kutty S, Gutberlet M, Hasenfuss G, Thiele H, Schuster A (2018) Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction. JACC Cardiovasc Imaging 11:1433–1444. https://doi.org/10.1016/j.jcmg.2017.11.034

    Article  PubMed  Google Scholar 

  17. Khan JN, Razvi N, Nazir SA, Singh A, Masca NG, Gershlick AH, Squire I, McCann GP (2014) Prevalence and extent of infarct and microvascular obstruction following different reperfusion therapies in ST-elevation myocardial infarction. J Cardiovasc Magn Resonanc 16:38. https://doi.org/10.1186/1532-429X-16-38

    Article  Google Scholar 

  18. Galasso G, Schiekofer S, D'Anna C, Gioia GD, Piccolo R, Niglio T, Rosa RD, Strisciuglio T, Cirillo P, Piscione F, Trimarco B (2014) No-reflow phenomenon: pathophysiology, diagnosis, prevention, and treatment*** A review of the current literature and future perspectives. Angiology 65:180–189. https://doi.org/10.1177/0003319712474336

    Article  PubMed  Google Scholar 

  19. Niccoli G, Cosentino N, Minelli S, Cataneo L, Crea F 2013 Microvascular obstruction after primary percutaneous coronary intervention: pathogenesis, diagnosis and prognostic significance. Curr Vasc Pharmacol 11: 245–62, https://www.ncbi.nlm.nih.gov/pubmed/23506502

  20. Zhu J, Zhang T, Xie Q, Zhang J (2015) Effects of upstream administration of tirofiban before percutaneous coronary intervention on spontaneous reperfusion and clinical outcomes in acute ST-segment elevation myocardial infarction. Angiology 66:70–78. https://doi.org/10.1177/0003319713514290

    Article  CAS  PubMed  Google Scholar 

  21. Ciccone A, Motto C, Abraha I, Cozzolino F, Santilli I (2014) Glycoprotein IIb-IIIa inhibitors for acute ischaemic stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005208.pub3

    Article  PubMed  Google Scholar 

  22. Sethi A, Bajaj A, Bahekar A, Bhuriya R, Singh M, Ahmed A, Khosla S (2013) Glycoprotein IIb/IIIa inhibitors with or without thienopyridine pretreatment improve outcomes after primary percutaneous coronary intervention in high-risk patients with ST elevation myocardial infarction–a meta-regression of randomized controlled trials. Catheter Cardiovasc Interv 82:171–181. https://doi.org/10.1002/ccd.24653

    Article  PubMed  Google Scholar 

  23. Liu X, Tao GZ (2013) Effects of tirofiban on the reperfusion-related no-reflow in rats with acute myocardial infarction. J Geriatr Cardiol 10:52–58. https://doi.org/10.3969/j.issn.1671-5411.2013.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giordano A, Musumeci G, D'Angelillo A, Rossini R, Zoccai GB, Messina S, Coscioni E, Romano S, Romano MF 2016 Effects of glycoprotein IIb/IIIa antagonists: anti platelet aggregation and beyond. Curr Drug Metab 17: 194–203, https://www.ncbi.nlm.nih.gov/pubmed/26652157

  25. Niccoli G, Montone RA, Ibanez B, Thiele H, Crea F, Heusch G, Bulluck H, Hausenloy DJ, Berry C, Stiermaier T, Camici PG, Eitel I (2019) Optimized treatment of ST-elevation myocardial infarction. Circ Res 125:245–258. https://doi.org/10.1161/CIRCRESAHA.119.315344

    Article  CAS  PubMed  Google Scholar 

  26. Akpek M, Sahin O, Sarli B, Baktir AO, Saglam H, Urkmez S, Ergin A, Oguzhan A, Arinc H, Kaya MG (2015) Acute effects of intracoronary tirofiban on no-reflow phenomena in patients with ST-segment elevated myocardial infarction undergoing primary percutaneous coronary intervention. Angiology 66:560. https://doi.org/10.1177/0003319714545780

    Article  CAS  PubMed  Google Scholar 

  27. Candemir B, Kilickap M, Ozcan OU, Kaya CT, Gerede M, Ozdemir AO, Ozdol C, Kumbasar D, Erol C (2012) Intracoronary versus intravenous high-dose bolus plus maintenance administration of tirofiban in patients undergoing primary percutaneous coronary intervention for acute ST elevation myocardial infarction. J Thromb Thrombol 34:65–72. https://doi.org/10.1007/s11239-012-0685-y

    Article  CAS  Google Scholar 

  28. Bodi V, Monmeneu JV, Ortiz-Perez JT, Lopez-Lereu MP, Bonanad C, Husser O, Minana G, Gomez C, Nunez J, Forteza MJ, Hervas A, de Dios E, Moratal D, Bosch X, Chorro FJ (2016) Prediction of reverse remodeling at cardiac MR imaging soon after first ST-segment-elevation myocardial infarction: results of a large prospective registry. Radiology 278:54–63. https://doi.org/10.1148/radiol.2015142674

    Article  PubMed  Google Scholar 

  29. Hamirani YS, Wong A, Kramer CM, Salerno M (2014) Effect of microvascular obstruction and intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial infarction: a systematic review and meta-analysis. JACC Cardiovasc Imaging 7:940–952. https://doi.org/10.1016/j.jcmg.2014.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang L, Mandry D, Chen B, Huttin O, Hossu G, Wang H, Beaumont M, Girerd N, Felblinger J, Odille F (2018) Impact of microvascular obstruction on left ventricular local remodeling after reperfused myocardial infarction. J Magn Reson Imaging 47:499–510. https://doi.org/10.1002/jmri.25780

    Article  PubMed  Google Scholar 

  31. Mather AN, Fairbairn TA, Ball SG, Greenwood JP, Plein S (2011) Reperfusion haemorrhage as determined by cardiovascular MRI is a predictor of adverse left ventricular remodelling and markers of late arrhythmic risk. Heart 97:453–459. https://doi.org/10.1136/hrt.2010.202028

    Article  PubMed  Google Scholar 

  32. Vicente J, Mewton N, Croisille P, Staat P, Bonnefoy-Cudraz E, Ovize M, Revel D (2009) Comparison of the angiographic myocardial blush grade with delayed-enhanced cardiac magnetic resonance for the assessment of microvascular obstruction in acute myocardial infarctions. Catheter Cardiovasc Interv 74:1000–1007. https://doi.org/10.1002/ccd.22157

    Article  CAS  PubMed  Google Scholar 

  33. Regenfus M, Schlundt C, Krähner R, Schönegger C, Adler W, Ludwig J, Daniel WG, Schmid M (2015) Six-year prognostic value of microvascular obstruction after reperfused ST-elevation myocardial infarction as assessed by contrast-enhanced cardiovascular magnetic resonance. Am J Cardiol 116:1022–1027. https://doi.org/10.1016/j.amjcard.2015.06.034

    Article  PubMed  Google Scholar 

  34. Van Kranenburg M, Magro M, Thiele H, de Waha S, Eitel I, Cochet A, Cottin Y, Atar D, Buser P, Wu E (2014) Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC 7:930–939. https://doi.org/10.1016/j.jcmg.2014.05.010

    Article  PubMed  Google Scholar 

  35. Novo G, Sutera MR, Lisi DD, Galifi MA, Fata B, Giambanco S, Arvigo L, Triolo OF, Evola S, Assennato P, Novo S (2014) Assessment of no-reflow phenomenon by myocardial blush grade and pulsed wave tissue doppler imaging in patients with acute coronary syndrome. J Cardiovasc Echogr 24:52–56. https://doi.org/10.4103/2211-4122.135615

    Article  PubMed  PubMed Central  Google Scholar 

  36. Buyukkaya E, Poyraz F, Karakas MF, Kurt M, Akcay AB, Akpinar I, Motor S, Turak O, Ozturk OH, Sen N, Akpek M, Kaya MG, Gibson CM (2013) Usefulness of monocyte chemoattractant protein-1 to predict no-reflow and three-year mortality in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol 112:187–193. https://doi.org/10.1016/j.amjcard.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  37. Gu YL, Kampinga MA, Wieringa WG, Fokkema ML, Nijsten MW, Hillege HL, van den Heuvel AF, Tan ES, Pundziute G, van der Werf R, Hoseyni Guyomi S, van der Horst IC, Zijlstra F, de Smet BJ (2010) Intracoronary versus intravenous administration of abciximab in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention with thrombus aspiration: the comparison of intracoronary versus intravenous abciximab administration during emergency reperfusion of ST-segment elevation myocardial infarction (CICERO) trial. Circulation 122:2709–2717. https://doi.org/10.1161/CIRCULATIONAHA.110.002741

    Article  CAS  PubMed  Google Scholar 

  38. Bertrand OF, Rodes-Cabau J, Larose E, Rinfret S, Gaudreault V, Proulx G, Barbeau G, Dery JP, Gleeton O, Manh-Nguyen C, Noel B, Roy L, Costerousse O, De Larochelliere R, Investigators EADaTSoCAiAMIS (2010) Intracoronary compared to intravenous Abciximab and high-dose bolus compared to standard dose in patients with ST-segment elevation myocardial infarction undergoing transradial primary percutaneous coronary intervention: a two-by-two factorial placebo-controlled randomized study. Am J Cardiol 105:1520–1527. https://doi.org/10.1016/j.amjcard.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  39. Iversen A, Abildgaard U, Galloe A, Hansen PR, Galatius S, Madsen JK, Engstroem T, Pedersen S, Jensen KS, Jensen JS (2011) Intracoronary compared to intravenous bolus abciximab during primary percutaneous coronary intervention in ST-segment elevation myocardial infarction (STEMI) patients reduces 30-day mortality and target vessel revascularization: a randomized trial. J Intervent Cardiol 24:105–111. https://doi.org/10.1111/j.1540-8183.2010.00616.x

    Article  PubMed  Google Scholar 

  40. Wu JH, Hao PP, Chen YG, Li RJ (2018) Intracoronary glycoprotein IIb/IIIa inhibitors improve short-term mortality and reinfarction in East Asian patients with ST-segment elevation myocardial infarction after thrombus aspiration: a meta-analysis. ECAM. https://doi.org/10.1155/2018/5174714

    Article  PubMed  Google Scholar 

  41. Pontone G, Carita P, Rabbat MG, Guglielmo M, Baggiano A, Muscogiuri G, Guaricci AI (2017) Role of Cardiac Magnetic Resonance Imaging in Myocardial Infarction. Curr Cardiol Rep 19:101. https://doi.org/10.1007/s11886-017-0907-1

    Article  PubMed  Google Scholar 

  42. Kellman P (2018) Dark-blood late-enhancement imaging improves detection of myocardial infarction. JACC Cardiovasc Imaging 11:1770–1772. https://doi.org/10.1016/j.jcmg.2017.10.014

    Article  PubMed  Google Scholar 

  43. Francis R, Kellman P, Kotecha T, Baggiano A, Norrington K, Martinez-Naharro A, Nordin S, Knight DS, Rakhit RD, Lockie T, Hawkins PN, Moon JC, Hausenloy DJ, Xue H, Hansen MS, Fontana M (2017) Prospective comparison of novel dark blood late gadolinium enhancement with conventional bright blood imaging for the detection of scar. J Cardiovasc Magn Resonanc 19:91. https://doi.org/10.1186/s12968-017-0407-x

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Mediecogroup for their courses with the statistical components of this paper.

Funding

The study was funded by 345 Talent Project in Shengjing Hospital of China Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Hou.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Ma, Y., Wang, X. et al. Intracoronary compared with intravenous bolus tirofiban on the microvascular obstruction in patients with STEMI undergoing PCI: a cardiac MR study. Int J Cardiovasc Imaging 36, 1121–1132 (2020). https://doi.org/10.1007/s10554-020-01800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01800-0

Keywords

Navigation