Skip to main content
Log in

Association between age and progression of carotid artery atherosclerosis: a serial high resolution magnetic resonance imaging study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

This study aimed to investigate the association between age and progression of carotid atherosclerotic plaques using serial high resolution magnetic resonance imaging (MRI). Symptomatic patients who had carotid atherosclerosis with 30–70% stenosis were enrolled in this study. Carotid MRI was performed at baseline and follow-up time point (≥ 6 months after baseline), respectively. The characteristics of carotid plaque progression among different age groups (> 75 years old, 60–75 years old and < 60 years old) were compared. Logistic regression was performed to relate age with carotid plaque progression. Of recruited 84 patients, 73 (mean age, 66.5 ± 11.4 years old; males, 82.2%) with 96 plaques were included in the final analysis. Compared with younger patients, older ones had significantly higher incidence of calcification in carotid plaques (> 75 years old: 91.3%, 60–75 years old: 65.7% and < 60 years old: 55.3%, p = 0.013), greater annual change of carotid wall volume (> 75 years old: 39.0 (4.3–104.6) mm3, 60–75 years old: 28.7 (− 28.0 to 73.7) mm3 and < 60 years old: 4.8 (− 27.1–31.9) mm3, p = 0.032) and maximum carotid wall area (> 75 years old: 6.1 (− 3.5 to 17.2) mm2, 60–75 years old: 2.4 (− 4.7 to 15.1) mm2 and < 60 years old: 1.4 (− 5.8 to 6.9) mm2, p = 0.046). Age (OR 1.44; 95% CI 1.10–1.89; p = 0.009) and hypertension (OR 4.61; 95% CI 1.41–15. 02; p = 0.011) were independent predictors in discriminating upper quartile of annual change of carotid wall volume after adjusting for all clinical factors. Older patients have faster progression rate in carotid plaques than younger ones and age is independently associated with carotid plaque progression. Our findings suggest that the carotid plaques of older patients need to be monitored more frequently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T (2002) Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke 33:2916–2922. https://doi.org/10.1161/01.STR.0000042207.16156.B9

    Article  PubMed  Google Scholar 

  2. Lu M, Peng P, Cui Y, Qiao H, Li D, Cai J,et al (2018) Association of progression of carotid artery wall volume and recurrent transient ischemic attack or stroke: a magnetic resonance imaging study. Stroke 49:614–620. https://doi.org/10.1161/STROKEAHA.117.019422

    Article  PubMed  Google Scholar 

  3. Chen PC, Jeng JS, Hsu HC, Su TC, Chien KL, Lee YT (2016) Carotid atherosclerosis progression and risk of cardiovascular events in a community in taiwan. Sci Rep 6:25733. https://doi.org/10.1038/srep25733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xie W, Liu J, Wang W, Wang M, Li Y, Sun J et al (2014) Five-year change in systolic blood pressure is independently associated with carotid atherosclerosis progression: a population-based cohort study. Hypertens Res 37:960–965. https://doi.org/10.1038/hr.2014.93

    Article  CAS  PubMed  Google Scholar 

  5. Amer MS, Khater MS, Omar OH, Mabrouk RA, Mostafa SA (2014) Association between framingham risk score and subclinical atherosclerosis among elderly with both Type 2 diabetes mellitus and healthy subjects. Am J Cardiovasc Dis 4:14–19

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fraga-Silva RA, Savergnini SQ, Montecucco F, Nencioni A, Caffa I, Soncini D et al (2014) Treatment with angiotensin-(1-7) reduces inflammation in carotid atherosclerotic plaques. Thromb Haemost 111:736–747. https://doi.org/10.1160/TH13-06-0448

    Article  CAS  PubMed  Google Scholar 

  7. Tattersall MC, Gassett A, Korcarz CE, Gepner AD, Kaufman JD, Liu KJ et al (2014) Predictors of carotid thickness and plaque progression during a decade: the multi-ethnic study of atherosclerosis. Stroke 45:3257–3262. https://doi.org/10.1161/STROKEAHA.114.005669

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hong H, Wang H, Liao H (2013) Prehypertension is associated with increased carotid atherosclerotic plaque in the community population of southern China. BMC Cardiovasc Disord 13:20. https://doi.org/10.1186/1471-2261-13-20

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saam T, Yuan C, Chu B, Takaya N, Underhill H, Cai J et al (2007) Predictors of carotid atherosclerotic plaque progression as measured by noninvasive magnetic resonance imaging. Atherosclerosis 194:e34–e42. https://doi.org/10.1016/j.atherosclerosis.2006.08.016

    Article  CAS  PubMed  Google Scholar 

  10. Huang LC, Lin RT, Chen CF, Chen CH, Juo SH, Lin HF (2016) Predictors of carotid intima-media thickness and plaque progression in a Chinese population. J Atheroscler Thromb 23:940–949. https://doi.org/10.5551/jat.32177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Corriveau MM, Johnston KW (2004) Interobserver variability of carotid doppler peak velocity measurements among technologists in an ICAVL-accredited vascular laboratory. J Vasc Surg 39:735–741. https://doi.org/10.1016/j.jvs.2003.12.017

    Article  PubMed  Google Scholar 

  12. Sun J, Balu N, Hippe DS, Xue Y, Dong L, Zhao X et al (2013) Subclinical carotid atherosclerosis: short-term natural history of lipid-rich necrotic core—a multicenter study with MR imaging. Radiology 268:61–68. https://doi.org/10.1148/radiol.13121702

    Article  PubMed  Google Scholar 

  13. Boussel L, Arora S, Rapp J, Rutt B, Huston J, Parker D et al (2009) Atherosclerotic plaque progression in carotid arteries: monitoring with high-spatial-resolution MR imaging–multicenter trial. Radiology 252:789–796. https://doi.org/10.1148/radiol.2523081798

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kerwin W, Xu D, Liu F, Saam T, Underhill H, Takaya N et al (2007) Magnetic resonance imaging of carotid atherosclerosis: plaque analysis. Top Magn Reson Imaging (TMRI) 18:371–378. https://doi.org/10.1097/rmr.0b013e3181598d9d

    Article  Google Scholar 

  15. Li D, Zhao H, Chen X, Chen S, Qiao H, He L et al (2018) Identification of intraplaque haemorrhage in carotid artery by simultaneous non-contrast angiography and intraplaque haemorrhage (SNAP) imaging: a magnetic resonance vessel wall imaging study. Eur Radiol 28:1681–1686. https://doi.org/10.1007/s00330-017-5096-1

    Article  PubMed  Google Scholar 

  16. Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL et al (2005) Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 25:234–239. https://doi.org/10.1161/01.ATV.0000149867.61851.31

    Article  CAS  PubMed  Google Scholar 

  17. Barnett HJM, Taylor DW, Haynes RB, Sackett DL, Peerless SJ, Ferguson GG et al (1991) Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 325:445–453. https://doi.org/10.1056/NEJM199108153250701

    Article  CAS  PubMed  Google Scholar 

  18. Li F, Yarnykh VL, Hatsukami TS, Chu B, Balu N, Wang J et al (2010) Scan-rescan reproducibility of carotid atherosclerotic plaque morphology and tissue composition measurements using multicontrast MRI at 3T. J Magn Reson Imaging 31:168–176. https://doi.org/10.1002/jmri.22014

    Article  CAS  PubMed  Google Scholar 

  19. Sun J, Zhao XQ, Balu N, Hippe DS, Hatsukami TS, Isquith DA et al (2015) Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study. Int J Cardiovasc Imaging 31:95–103. https://doi.org/10.1007/s10554-014-0532-7

    Article  PubMed  Google Scholar 

  20. van Lammeren GW, Reichmann BL, Moll FL, Bots ML, de Kleijn DP, de Vries JP et al (2011) Atherosclerotic plaque vulnerability as an explanation for the increased risk of stroke in elderly undergoing carotid artery stenting. Stroke 42:2550–2555. https://doi.org/10.1161/STROKEAHA.110.607382

    Article  PubMed  Google Scholar 

  21. van Gils MJ, Bodde MC, Cremers LG, Dippel DW, van der Lugt A (2013) Determinants of calcification growth in atherosclerotic carotid arteries; a serial multi-detector CT angiography study. Atherosclerosis 227:95–99. https://doi.org/10.1016/j.atherosclerosis.2012.12.017

    Article  CAS  PubMed  Google Scholar 

  22. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13–C18

    Article  CAS  PubMed  Google Scholar 

  23. Banach M, Serban C, Sahebkar A, Mikhailidis DP, Ursoniu S, Ray KK,et al (2015) Impact of statin therapy on coronary plaque composition: a systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Med 13: 229. https://doi.org/10.1186/s12916-015-0459-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herder M, Arntzen KA, Johnsen SH, Mathiesen EB (2012) The metabolic syndrome and progression of carotid atherosclerosis over 13 years. The tromso study. Cardiovasc Diabetol 11:77. https://doi.org/10.1186/1475-2840-11-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang JC, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111:245–259. https://doi.org/10.1161/CIRCRESAHA.111.261388

    Article  CAS  PubMed  Google Scholar 

  26. Cai J, Hatsukami TS, Ferguson MS, Kerwin WS, Saam T, Chu B et al (2005) In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 112:3437–3444. https://doi.org/10.1161/CIRCULATIONAHA.104.528174

    Article  PubMed  Google Scholar 

  27. Takaya N, Yuan C, Chu B, Saam T, Underhill H, Cai J et al (2006) Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI-initial results. Stroke 37:818–823. https://doi.org/10.1161/01.STR.0000204638.91099.91

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Grants of National Natural Science Foundation of China (81771825), Beijing Science and Technology Project (D171100003017003), and Ministry of Science and Technology of China (2017YFC1307904).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianming Cai or Xihai Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki and was approved by Institution’s ethics committee on research on humans.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Peng, P., Qiao, H. et al. Association between age and progression of carotid artery atherosclerosis: a serial high resolution magnetic resonance imaging study. Int J Cardiovasc Imaging 35, 1287–1295 (2019). https://doi.org/10.1007/s10554-019-01538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01538-4

Keywords

Navigation