Skip to main content
Log in

Multi-institutional evaluation of the indications and radiation dose of functional cardiovascular computed tomography (CCT) imaging in congenital heart disease

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Ventricular volumes and ejection fraction are often used in clinical decision making in patients with congenital heart disease (CHD). The referral diagnosis, radiation exposure and image quality of functional cardiac computed tomography (CT) in a relatively large cohort of patients of CHD has not been reported. This is a retrospective evaluation of functional CT studies performed in CHD patients from three institutions (1/2007–3/2013). Patient and scanner characteristics, radiation dose estimates and image quality were compared. Two hundred ninety-eight functional CT studies were evaluated. The most common referral diagnosis were tetralogy of Fallot (33 %), transposition complexes (24 %) single ventricle heart disease (15 %), and left sided obstruction (15 %). The reason for cardiac CT was presence of pacemaker (60 %), need for detailed coronary artery imaging (18 %), metallic artifact in CMR (12 %), evaluation of prosthetic valve function (4 %), and claustrophobia or BMI too large for the available MR scanner (6 %). 266 (89.3 %) scans allowed quantification of ventricular function, 25 (8.4 %) scans allowed qualitative assessment of function, and 7 (2.3 %) of the scans were non-diagnostic for functional analysis. Median DLP was 399 mGy cm (186, 614), and median effective dose was 5.5 mSv (2.6, 8.5). Radiation dose and image quality varied across institutions. Cardiac CT function imaging can be performed in patients with congenital heart disease when CMR is contraindicated or has poor image quality. Radiation dose and image quality varies across institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ (2010) Changing mortality in congenital heart disease. J Am Coll Cardiol 56(14):1149–1157. doi:10.1016/j.jacc.2010.03.085

    Article  PubMed  Google Scholar 

  2. Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115(2):163–172. doi:10.1161/circulationaha.106.627.224

    Article  PubMed  Google Scholar 

  3. Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M (2014) Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation 130(9):749–756. doi:10.1161/CIRCULATIONAHA.113.008396

    Article  PubMed  Google Scholar 

  4. Margossian R, Schwartz ML, Prakash A, Wruck L, Colan SD, Atz AM, Bradley TJ, Fogel MA, Hurwitz LM, Marcus E, Powell AJ, Printz BF, Puchalski MD, Rychik J, Shirali G, Williams R, Yoo SJ, Geva T, Pediatric Heart Network I (2009) Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study). Am J Cardiol 104(3):419–428. doi:10.1016/j.amjcard.2009.03.058

    Article  PubMed Central  PubMed  Google Scholar 

  5. Puchalski MD, Williams RV, Askovich B, Minich LL, Mart C, Tani LY (2007) Assessment of right ventricular size and function: echo versus magnetic resonance imaging. Congenit Heart Dis 2(1):27–31. doi:10.1111/j.1747-0803.2007.00068.x

    Article  PubMed  Google Scholar 

  6. Dragulescu A, Grosse-Wortmann L, Fackoury C, Mertens L (2012) Echocardiographic assessment of right ventricular volumes: a comparison of different techniques in children after surgical repair of tetralogy of Fallot. Eur Heart J Cardiovasc Imaging 13(7):596–604. doi:10.1093/ejechocard/jer278

    Article  PubMed  Google Scholar 

  7. Valente AM, Cook S, Festa P, Ko HH, Krishnamurthy R, Taylor AM, Warnes CA, Kreutzer J, Geva T (2014) Multimodality imaging guidelines for patients with repaired tetralogy of fallot: a report from the american society of echocardiography: developed in collaboration with the society for cardiovascular magnetic resonance and the society for pediatric radiology. J Am Soc Echocardiogr 27(2):111–141. doi:10.1016/j.echo.2013.11.009

    Article  PubMed  Google Scholar 

  8. Geva T (2011) Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson 13:9. doi:10.1186/1532-429X-13-9

    Article  PubMed Central  PubMed  Google Scholar 

  9. Khairy P, Van Hare GF, Balaji S, Berul CI, Cecchin F, Cohen MI, Daniels CJ, Deal BJ, Dearani JA, Groot N, Dubin AM, Harris L, Janousek J, Kanter RJ, Karpawich PP, Perry JC, Seslar SP, Shah MJ, Silka MJ, Triedman JK, Walsh EP, Warnes CA (2014) PACES/HRS Expert Consensus Statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Heart Rhythm 11(10):e102–e165. doi:10.1016/j.hrthm.2014.05.009

    Article  PubMed  Google Scholar 

  10. Sharma A, Einstein AJ, Vallakati A, Arbab-Zadeh A, Mukherjee D, Lichstein E (2014) Meta-analysis of global left ventricular function comparing multidetector computed tomography with cardiac magnetic resonance imaging. Am J Cardiol 113(4):731–738. doi:10.1016/j.amjcard.2013.11.016

    Article  PubMed  Google Scholar 

  11. Raman SV, Cook SC, McCarthy B, Ferketich AK (2005) Usefulness of multidetector row computed tomography to quantify right ventricular size and function in adults with either tetralogy of Fallot or transposition of the great arteries. Am J Cardiol 95(5):683–686. doi:10.1016/j.amjcard.2004.11.014

    Article  PubMed  Google Scholar 

  12. Takx RA, Moscariello A, Schoepf UJ, Barraza JM Jr, Nance JW Jr, Bastarrika G, Das M, Meyer M, Wildberger JE, Schoenberg SO, Fink C, Henzler T (2012) Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol 81(4):e598–e604. doi:10.1016/j.ejrad.2011.07.001

    Article  PubMed  Google Scholar 

  13. Dupont MV, Dragean CA, Coche EE (2011) Right ventricle function assessment by MDCT. AJR Am J Roentgenol 196(1):77–86. doi:10.2214/AJR.09.3801

    Article  PubMed  Google Scholar 

  14. Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL, Shaw LJ, Hausleiter J (2011) SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr 5(4):198–224. doi:10.1016/j.jcct.2011.06.001

    Article  PubMed Central  PubMed  Google Scholar 

  15. AAPM Task Group 23 of the Diagnostic Imaging Council CT Committee. The measurement, reporting, and management of radiation dose in CT [AAPM Report 96]. ISBN 9781888340730 (January 2008)

  16. AAPM Task Group 204 of Computer Tomography Subcommittee (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. ISBN 9781936366088

  17. Tutarel O, Kempny A, Alonso-Gonzalez R, Jabbour R, Li W, Uebing A, Dimopoulos K, Swan L, Gatzoulis MA, Diller GP (2014) Congenital heart disease beyond the age of 60: emergence of a new population with high resource utilization, high morbidity, and high mortality. Eur Heart J 35(11):725–732. doi:10.1093/eurheartj/eht257

    Article  PubMed  Google Scholar 

  18. Khairy P, Fernandes SM, Mayer JE Jr, Triedman JK, Walsh EP, Lock JE, Landzberg MJ (2008) Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 117(1):85–92. doi:10.1161/CIRCULATIONAHA.107.738559

    Article  PubMed  Google Scholar 

  19. Escudero C, Khairy P, Sanatani S (2013) Electrophysiologic considerations in congenital heart disease and their relationship to heart failure. Can J Cardiol 29(7):821–829. doi:10.1016/j.cjca.2013.02.016

    Article  PubMed  Google Scholar 

  20. Kantor PF, Andelfinger G, Dancea A, Khairy P (2013) Heart failure in congenital heart disease. Can J Cardiol 29(7):753–754. doi:10.1016/j.cjca.2013.03.020

    Article  PubMed  Google Scholar 

  21. Engelfriet P, Boersma E, Oechslin E, Tijssen J, Gatzoulis MA, Thilen U, Kaemmerer H, Moons P, Meijboom F, Popelova J, Laforest V, Hirsch R, Daliento L, Thaulow E, Mulder B (2005) The spectrum of adult congenital heart disease in Europe: morbidity and mortality in a 5 year follow-up period. The Euro Heart Survey on adult congenital heart disease. Eur Heart J 26(21):2325–2333. doi:10.1093/eurheartj/ehi396

    Article  PubMed  Google Scholar 

  22. Khairy P, Dore A, Talajic M, Dubuc M, Poirier N, Roy D, Mercier LA (2006) Arrhythmias in adult congenital heart disease. Expert Rev Cardiovasc Ther 4(1):83–95. doi:10.1586/14779072.4.1.83

    Article  PubMed  Google Scholar 

  23. Oechslin EN, Harrison DA, Connelly MS, Webb GD, Siu SC (2000) Mode of death in adults with congenital heart disease. Am J Cardiol 86(10):1111–1116

    Article  CAS  PubMed  Google Scholar 

  24. Mondesert B, Dubin AM, Khairy P (2014) Diagnostic tools for arrhythmia detection in adults with congenital heart disease and heart failure. Heart Fail Clin 10(1):57–67. doi:10.1016/j.hfc.2013.09.009

    Article  PubMed  Google Scholar 

  25. Motonaga KS, Khairy P, Dubin AM (2014) Electrophysiologic therapeutics in heart failure in adult congenital heart disease. Heart Fail Clin 10(1):69–89. doi:10.1016/j.hfc.2013.09.011

    Article  PubMed  Google Scholar 

  26. Mondesert B, Khairy P (2014) Implantable cardioverter-defibrillators in congenital heart disease. Curr Opin Cardiol 29(1):45–52. doi:10.1097/HCO.0000000000000019

    Article  PubMed  Google Scholar 

  27. Kliger C, Eiros R, Isasti G, Einhorn B, Jelnin V, Cohen H, Kronzon I, Perk G, Fontana GP, Ruiz CE (2013) Review of surgical prosthetic paravalvular leaks: diagnosis and catheter-based closure. Eur Heart J 34(9):638–649. doi:10.1093/eurheartj/ehs347

    Article  PubMed  Google Scholar 

  28. Habets J, Symersky P, van Herwerden LA, de Mol BA, Spijkerboer AM, Mali WP, Budde RP (2011) Prosthetic heart valve assessment with multidetector-row CT: imaging characteristics of 91 valves in 83 patients. Eur Radiol 21(7):1390–1396. doi:10.1007/s00330-011-2068-8

    Article  PubMed Central  PubMed  Google Scholar 

  29. Guo YK, Gao HL, Zhang XC, Wang QL, Yang ZG, Ma ES (2010) Accuracy and reproducibility of assessing right ventricular function with 64-section multi-detector row CT: comparison with magnetic resonance imaging. Int J Cardiol 139(3):254–262. doi:10.1161/circimaging.109.875021

    Article  PubMed  Google Scholar 

  30. Busch S, Johnson TR, Wintersperger BJ, Minaifar N, Bhargava A, Rist C, Reiser MF, Becker C, Nikolaou K (2008) Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings. Eur Radiol 18(3):570–575. doi:10.1007/s00330-007-0767-y

    Article  CAS  PubMed  Google Scholar 

  31. Yamamuro M, Tadamura E, Kubo S, Toyoda H, Nishina T, Ohba M, Hosokawa R, Kimura T, Tamaki N, Komeda M, Kita T, Konishi J (2005) Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology 234(2):381–390. doi:10.1148/radiol/2342031271

    Article  PubMed  Google Scholar 

  32. Johnson JN, Hornik CP, Li JS, Benjamin DK Jr, Yoshizumi TT, Reiman RE, Frush DP, Hill KD (2014) Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation 130(2):161–167. doi:10.1161/CIRCULATIONAHA.113.005425

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hollingsworth CL, Yoshizumi TT, Frush DP, Chan FP, Toncheva G, Nguyen G, Lowry CR, Hurwitz LM (2007) Pediatric cardiac-gated CT angiography: assessment of radiation dose. AJR Am J Roentgenol 189(1):12–18. doi:10.1148/radiol/2502081340

    Article  PubMed  Google Scholar 

  34. Chen CM, Liu YC, Chen CC, Wen MS, Hung CF, Wan YL (2012) Radiation dose exposure of patients undergoing 320-row cardiac CT for assessing coronary angiography and global left ventricular function. Int J Cardiovasc Imaging 28(Suppl 1):1–5. doi:10.1007/s10554-012-0065-x

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kelly Han.

Ethics declarations

Conflict of interest

John R. Lesser, B. Kelly Han, and Anthony M. Hlavacek receive grant support from Siemens Medical, Katharine Grant is a Siemens employee.

Ethical approval

This was a retrospective data review, all studies were anonymized and an IRB waiver was obtained. All studies were clinically indicated and not performed for the purpose of research. This is in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B.K., Hlavacek, A.M., Kay, W.A. et al. Multi-institutional evaluation of the indications and radiation dose of functional cardiovascular computed tomography (CCT) imaging in congenital heart disease. Int J Cardiovasc Imaging 32, 339–346 (2016). https://doi.org/10.1007/s10554-015-0775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0775-y

Keywords

Navigation