Skip to main content
Log in

2D phase contrast blood flow velocity measurements of the thoracic vasculature: comparison of the effect of gadofosveset trisodium and gadopentetate dimeglumine

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of this prospective study is to compare the performance of 2D time-resolved phase-contrast (PC) MRI prior to and after the administration of an intravascular (gadofosveset-trisodium) and extravascular (gadopentetate-dimeglumine) contrast agent in the same patient in the cardiovascular system. This study was approved by the ethics committee (Study-Number-07/Q0704/2) and registered with the MedicinesAndHealthcareProductsRegulatoryAgency (MHRA-Study-Number-28482/0002/001-0001, EudraCT-Number-2006-007042). All patients signed an informed consent. 20 patients were examined using a 1.5T MR-scanner and 32-channel-coil-technology. Gadopentetate-dimeglumine (GdD) and gadofosveset-trisodium (GdT) were administered in the same patient on consecutive days. Image quality, velocity-to-noise-ratios (VNRs) and standard-deviation of blood-flow-velocities (phase-noise) were compared between GdT, GdD and non-contrast-enhanced imaging. On both days pre- and post-contrast-scans were performed. The administration of GdT significantly improved the delineation of the perfused lumen and the VNR compared to GdD and non-contrast-enhanced imaging. Standard deviations of through-plane and in-plane velocity-measurements (phase-noise) were significantly reduced after GdT administration (p < 0.05). No significant differences (p > 0.05) were measured regarding absolute flow values prior to and after the administration of GdD and GdT. PC flow imaging benefits from the administration of an intravascular contrast agent by improving the delineation of the perfused lumen and reducing phase noise in flow measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Greil GF, Geva T, Maier SE, Powell AJ (2002) Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. J Magn Reson Imaging 15(1):47–54

    Article  PubMed  Google Scholar 

  2. Frayne R, Steinman DA, Ethier CR, Rutt BK (1995) Accuracy of MR phase contrast velocity measurements for unsteady flow. J Magn Reson Imaging 5(4):428–431

    Article  CAS  PubMed  Google Scholar 

  3. Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB (1991) Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol 157(1):9–16

    Article  CAS  PubMed  Google Scholar 

  4. Mostbeck GH, Caputo GR, Higgins CB (1992) MR measurement of blood flow in the cardiovascular system. AJR Am J Roentgenol 159(3):453–461

    Article  CAS  PubMed  Google Scholar 

  5. Kilner PJ, Firmin DN, Rees RS et al (1991) Valve and great vessel stenosis: assessment with MR jet velocity mapping. Radiology 178(1):229–235

    Article  CAS  PubMed  Google Scholar 

  6. Sakuma H, Kawada N, Takeda K, Higgins CB (1999) MR measurement of coronary blood flow. J Magn Reson Imaging 10(5):728–733

    Article  CAS  PubMed  Google Scholar 

  7. Sakuma H, Kawada N, Takeda K, Higgins CB (1999) MR measurement of coronary blood flow. J Magn Reson Imaging 10(5):728–733

    Article  CAS  PubMed  Google Scholar 

  8. Hays AG, Hirsch GA, Kelle S, Gerstenblith G, Weiss RG, Stuber M (2010) Noninvasive visualization of coronary artery endothelial function in healthy subjects and in patients with coronary artery disease. J Am Coll Cardiol 56(20):1657–1665

    Article  PubMed  Google Scholar 

  9. Lee VS, Spritzer CE, Carroll BA et al (1997) Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation. AJR Am J Roentgenol 169(4):1125–1131

    Article  CAS  PubMed  Google Scholar 

  10. Lauffer RB, Parmelee DJ, Dunham SU et al (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207(2):529–538

    Article  CAS  PubMed  Google Scholar 

  11. Lotz J, Doker R, Noeske R et al (2005) In vitro validation of phase-contrast flow measurements at 3 T in comparison to 1.5 T: precision, accuracy, and signal-to-noise ratios. J Magn Reson Imaging 21(5):604–610

    Article  PubMed  Google Scholar 

  12. Saeed M, Wendland MF, Higgins CB (2000) Blood pool MR contrast agents for cardiovascular imaging. J Magn Reson Imaging 12(6):890–898

    Article  CAS  PubMed  Google Scholar 

  13. Schoenberg SO, Just A, Bock M, Knopp MV, Persson PB, Kirchheim HR (1997) Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast flow measurements. Am J Physiol 272(5 Pt 2):H2477–H2484

    CAS  PubMed  Google Scholar 

  14. Heverhagen JT, Hoppe M, Klose KJ, Wagner HJ (2002) Does the application of gadolinium-DTPA have an impact on magnetic resonance phase contrast velocity measurements? Results from an in vitro study. Eur J Radiol 44(1):65–69

    Article  CAS  PubMed  Google Scholar 

  15. Bass JC, Prince MR, Londy FJ, Chenevert TL (1997) Effect of gadolinium on phase-contrast MR angiography of the renal arteries. AJR Am J Roentgenol 168(1):261–266

    Article  CAS  PubMed  Google Scholar 

  16. Hartmann M, Wiethoff AJ, Hentrich HR, Rohrer M (2006) Initial imaging recommendations for Vasovist angiography. Eur Radiol 16(Suppl 2):B15–B23

    Article  PubMed  Google Scholar 

  17. Stalder AF, Dong Z, Yang Q et al (2012) Four-dimensional flow-sensitive MRI of the thoracic aorta: 12- versus 32-channel coil arrays. J Magn Reson Imaging 35(1):190–195

    Article  PubMed  Google Scholar 

  18. Frydrychowicz A, Stalder AF, Russe MF et al (2009) Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J Magn Reson Imaging 30(1):77–84

    Article  PubMed  Google Scholar 

  19. Frydrychowicz A, Schlensak C, Stalder A et al (2007) Ascending-descending aortic bypass surgery in aortic arch coarctation: four-dimensional magnetic resonance flow analysis. J Thorac Cardiovasc Surg 133(1):260–262

    Article  PubMed  Google Scholar 

  20. Nett EJ, Johnson KM, Frydrychowicz A et al (2012) Four-dimensional phase contrast MRI with accelerated dual velocity encoding. J Magn Reson Imaging 35(6):1462–1471

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wong J, Mathur S, Giese D et al (2012) Analysis of aortopulmonary window using cardiac magnetic resonance imaging. Circulation 126(15):e228–e229

    Article  PubMed  Google Scholar 

  22. Markl M, Kilner PJ, Ebbers T (2011) Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13:7

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  CAS  PubMed  Google Scholar 

  24. Lee AT, Pike GB, Pelc NJ (1995) Three-point phase-contrast velocity measurements with increased velocity-to-noise ratio. Magn Reson Med 33(1):122–126

    Article  CAS  PubMed  Google Scholar 

  25. Greil GF, Powell AJ, Gildein HP, Geva T (2002) Gadolinium-enhanced three-dimensional magnetic resonance angiography of pulmonary and systemic venous anomalies. J Am Coll Cardiol 39(2):335–341

    Article  PubMed  Google Scholar 

  26. McConnell MV, Khasgiwala VC, Savord BJ et al (1997) Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR Am J Roentgenol 168(5):1369–1375

    Article  CAS  PubMed  Google Scholar 

  27. Stuber M, Botnar RM, Danias PG et al (1999) Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J Magn Reson Imaging 10(5):790–799

    Article  CAS  PubMed  Google Scholar 

  28. Taylor AM, Panting JR, Keegan J et al (1999) Use of the intravascular contrast agent NC100150 injection in spin-echo and gradient-echo imaging of the heart. J Cardiovasc Magn Reson 1(1):23–32

    Article  CAS  PubMed  Google Scholar 

  29. Gerretsen SC, Versluis B, Bekkers SC, Leiner T (2008) Cardiac cine MRI: comparison of 1.5 T, non-enhanced 3.0 T and blood pool enhanced 3.0 T imaging. Eur J Radiol 65(1):80–85

    Article  CAS  PubMed  Google Scholar 

  30. Wagenseil JE, Johansson LO, Lorenz CH (1999) Characterization of t1 relaxation and blood-myocardial contrast enhancement of NC100150 injection in cardiac MRI. J Magn Reson Imaging 10(5):784–789

    Article  CAS  PubMed  Google Scholar 

  31. Huber S, Muthupillai R, Mojibian H, Cheong B, Kouwenhoven M, Flamm SD (2008) Rapid assessment of regional and global left ventricular function using three-dimensional k-t BLAST imaging. Magn Reson Imaging 26(6):727–738

    Article  PubMed  Google Scholar 

  32. Ritter CO, Wilke A, Wichmann T, Beer M, Hahn D, Kostler H (2011) Comparison of intravascular and extracellular contrast media for absolute quantification of myocardial rest-perfusion using high-resolution MRI. J Magn Reson Imaging 33(5):1047–1051

    Article  PubMed  Google Scholar 

  33. Nezafat R, Herzka D, Stehning C, Peters DC, Nehrke K, Manning WJ (2008) Inflow quantification in three-dimensional cardiovascular MR imaging. J Magn Reson Imaging 28(5):1273–1279

    Article  PubMed  Google Scholar 

  34. Kozerke S, Tsao J (2004) Reduced data acquisition methods in cardiac imaging. Top Magn Reson Imaging 15(3):161–168

    Article  PubMed  Google Scholar 

  35. Bock J, Frydrychowicz A, Stalder AF et al (2010) 4D phase contrast MRI at 3 T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med 63(2):330–338

    Article  PubMed  Google Scholar 

  36. Frydrychowicz A, Arnold R, Harloff A et al (2008) Images in cardiovascular medicine. In vivo 3-dimensional flow connectivity mapping after extracardiac total cavopulmonary connection. Circulation 118(2):e16–e17

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study has received funding by the Department of Health through the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. The Division of Imaging Sciences receives also support as the Centre of Excellence in Medical Engineering (funded by the Wellcome Trust and EPSRC; grant number WT 088641/Z/09/Z) as well as the BHF Centre of Excellence (British Heart Foundation award RE/08/03). The magnetic resonance imaging scanner is partly supported by Philips Healthcare. The study was partly supported by Bayer Schering Pharma GmbH. Otherwise there are no financial or other relations that could lead to a conflict of interest.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus R. Makowski.

Additional information

Trial registration This study was approved by the ethics committee (Study-Number-07/Q0704/2) and registered with the MedicinesAndHealthcare ProductsRegulatoryAgency (MHRA-Study-Number-28482/0002/001-0001, EudraCT-Number-2006-007042).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makowski, M.R., Wiethoff, A.J., Ebersberger, H.U. et al. 2D phase contrast blood flow velocity measurements of the thoracic vasculature: comparison of the effect of gadofosveset trisodium and gadopentetate dimeglumine. Int J Cardiovasc Imaging 31, 409–416 (2015). https://doi.org/10.1007/s10554-014-0565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0565-y

Keywords

Navigation