Skip to main content
Log in

4D flow image quality with blood pool contrast: a comparison of gadofosveset trisodium and ferumoxytol

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To evaluate the effect of MRI blood pool contrast agent on 4D flow image quality and ventricular volume measurements. Adult patients referred for clinical cardiac MRI (n = 22) were imaged with 4D flow. Patients with renal failure (n = 10) received ferumoxytol, and the remainder (n = 12) received gadofosveset trisodium. Image quality was assessed with (1) signal-to-noise ratio (SNR); (2) contrast-to-noise ratio (CNR); and (3) 5-point Likert scale based on endocardial border definition (1 = none; 2 = partial but unable to visualize; 3 = able to roughly estimate; 4 = visible for most of the cardiac cycle; 5 = excellent definition). A subset (n = 15) had short axis steady-state free precession (SSFP) cine imaging allowing for comparison of standard volumetric measurement technique with 4D flow derived volumetric measurements. 4D flow studies using ferumoxytol demonstrated a higher median Likert score of 5 (IQR, 5–5) versus 3 (IQR, 2–3). Median cavity SNR and CNR were higher for ferumoxytol compared to gadofosveset trisodium [65 (IQR, 50–74) versus 22 (IQR, 14–28), p < 0.001; and 40 (IQR, 32–49) versus 4 (IQR, 3–10), p < 0.001]. Good correlation (p < 0.001) was seen between SSFP and 4D flow measured ventricular volumes (ESV and EDV) with ferumoxytol (r = 0.998, mean difference = 1.2 mL, LOA = − 7.7–10.1 mL) and gadofosveset trisodium (r = 0.942, mean difference = − 2.7 mL, LOA = − 35.7–27.1 mL). Ferumoxytol used off-label as an MRI blood pool contrast agent offers an attractive alternative to gadofosveset trisodium in patients with renal failure, with excellent 4D flow image quality and good correlation of volumetric measurements compared to the CMR reference (SSFP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CNR:

Contrast to noise ratio

EDV:

End diastolic volume

ESV:

End systolic volume

FDA:

US Food and Drug Administration

IQR:

Inter-quartile range

LV:

Left ventricle

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

RV:

Right ventricle

SNR:

Signal-to-noise ratio

TE:

Echo time

TR:

Repetition time

VENC:

Velocity encoding range

4D flow:

Three-dimensional, time-resolved phase contrast MRI

References

  1. Prince MR (2003) A pilot investigation of new superparamagnetic iron oxide (ferumoxytol) as a contrast agent for cardiovascular MRI. J X-Ray Sci Technol 11(4):231–240

    CAS  Google Scholar 

  2. Stillman AE, Wilke N, Jerosch-Herold M (1997) Use of an intravascular T1 contrast agent to improve MR cine myocardial-blood pool definition in man. J Magn Reson Imag 7(4):765–767

    Article  CAS  Google Scholar 

  3. Finn JP, Nguyen KL, Han F et al (2016) Cardiovascular MRI with ferumoxytol. Clin Radiol 71(8):796–806

    Article  CAS  PubMed  Google Scholar 

  4. Vasanawala SS, Nguyen KL, Hope MD et al (2016) Safety and technique of ferumoxytol administration for MRI. Magn Reson Med 75(5):2107–2111

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hope MD, Hope TA, Zhu C et al (2015) Vascular imaging with ferumoxytol as a contrast agent. AJR Am J Roentgenol 205(3):W366-73

    Article  PubMed  Google Scholar 

  6. Bremerich J, Bilecen D, Reimer P (2007) MR angiography with blood pool contrast agents. Eur Radiol 17(12):3017–3024

    Article  PubMed  Google Scholar 

  7. Bashir MR, Bhatti L, Marin D et al (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imag 41(4):884–898

    Article  Google Scholar 

  8. Bock J, Frydrychowicz A, Stalder AF et al (2010) 4D phase contrast MRI at 3 T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med 63(2):330–338

    Article  PubMed  Google Scholar 

  9. Hsiao A, Lustig M, Alley MT et al (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. AJR Am J Roentgenol 198(3):W250–W259

    Article  Google Scholar 

  10. Hanneman K, Kino A, Cheng JY et al (2016) Assessment of the precision and reproducibility of ventricular volume, function, and mass measurements with ferumoxytol-enhanced 4D flow MRI. J Magn Reson Imag 44:383–392

    Article  Google Scholar 

  11. Chelu RG, van den Bosch AE, van Kranenburg M et al (2016) Qualitative grading of aortic regurgitation: a pilot study comparing CMR 4D flow and echocardiography. Int J Cardiovasc Imaging 32(2):301–307

    Article  PubMed  Google Scholar 

  12. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER et al (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17:29

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160

    Article  CAS  PubMed  Google Scholar 

  14. European Medicines Agency (2017) PRAC concludes assessment of gadolinium agents used in body scans and recommends regulatory actions, including suspension for some marketing authorisations. Review finds evidence of gadolinium deposits in the brain after MRI body scans but no signs of harm. EMA/157486/2017

  15. Ramalho J, Semelka RC, Ramalho M et al (2016) Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol 37(7):1192–1198

    Article  CAS  PubMed  Google Scholar 

  16. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  PubMed  Google Scholar 

  17. Camren GP, Wilson GJ, Bamra VR et al. (2014) A comparison between gadofosveset trisodium and gadobenate dimeglumine for steady state MRA of the thoracic vasculature. Biomed Res Int, 2014:625614

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lai LM, Cheng JY, Alley MT, Zhang T, Lustig M, Vasanawala SS (2017) Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia. J Magn Reson Imaging 45(5):1407–1418

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Christopher B. Williams (technologist) and Benjamin Mow (chief technologist) for their technical guidance and support.

Funding

Supported by NIH/NHLBI R01 HL123759 and the UCSF Department of Radiology & Biomedical Imaging Seed Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanae Mukai.

Ethics declarations

Conflict of interest

All authors have nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukai, K., Burris, N.S., Mahadevan, V.S. et al. 4D flow image quality with blood pool contrast: a comparison of gadofosveset trisodium and ferumoxytol. Int J Cardiovasc Imaging 34, 273–279 (2018). https://doi.org/10.1007/s10554-017-1224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1224-x

Keywords

Navigation