Skip to main content
Log in

Speckle-tracking echocardiographic imaging of the right ventricular systolic and diastolic parameters in chronic exercise

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Morphology and functions of the right ventricle (RV) show differences in the athletes based on whether exercising acutely or chronically. Temporary RV dysfunction occurs during acute exercise. However, RV functions during chronic exercise are speculative. In the present study, we aimed to evaluate RV functions of long-distance runners, who perform chronic exercise, by both conventional and speckle-tracking echocardiography. In this study, we examined 44 long-distance runner and 30 sedentary subjects. RV longitudinal strain (LS), RV systolic longitudinal strain rate (LSRs), RV early diastolic longitudinal strain rate and late diastolic longitudinal strain rate parameters were evaluated by apical 4-chamber gray-scale imaging through the septum and free wall of RV in accordance with automated function imaging protocol. It was observed on the conventional echocardiographic parameters of longdistance runners that RA and RVED diameter have been increased (p = 0.028; p = 0.003 respectively), whereas systolic right ventricle fractional area change and tricuspid annular plane systolic excursion values were similar to those of sedentary subjects (p = 0.65; p = 0.75 respectively). LS and systolic and diastolic strain rate functions were also similar. Morphological adaptation, but not functional change, occurs in the athletes performing chronic exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pellicia A, Maron BJ (1997) Outer limits of the athlete’s heart: the effect of gender and relevance to the differential diagnosis with primary cardiac diseases. Cardiol Clin 15:381–396

    Article  Google Scholar 

  2. Oxborough D, Shave R, Warburton D, Williams K, Oxborough A, Charlesworth S et al (2011) Dilatation and dysfunction of the right ventricle immediately after ultraendurance exercise: exploratory insights from conventional two-dimensional and speckle tracking echocardiography. Circ Cardiovasc Imaging 4:253–263

    Article  PubMed  Google Scholar 

  3. McKechnie J, Leary W, Noakes T, Kallmeyer J, MacSearraigh E, Oliver L (1979) Acute pulmonary oedema in two athletes during a 90-km running race. S Afr Med J 56:261–265

    PubMed  CAS  Google Scholar 

  4. Oxborough D, Shave R, Middleton N, Whyte G, Forster J, George K (2006) the impact of marathon running upon ventricular function as assessed by 2D, Doppler, and tissue-Doppler echocardiography. Echocardiography 23:635–641

    Article  PubMed  Google Scholar 

  5. Heidbuchel H, Hoogsteen J, Fagard R, Vanhees L, Ector H, Willems R et al (2003) High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur Heart J 24:1473–1480

    Article  PubMed  Google Scholar 

  6. La Gerche A, Robberecht C, Kuiperi C, Nuyens D, Willems R, de Ravel T et al (2010) Lower than expected desmosomal gene mutation prevalence in endurance athletes with complex ventricular arrythmias of right ventricular origin. Heart 96:1268–1274

    Article  PubMed  Google Scholar 

  7. Dávila-Román VG, Guest TM, Tuteur PG, Rowe WJ, Ladenson JH, Jaffe AS (1997) Transient right but not left ventricular dysfunction after strenuous exercise at high altitude. J Am Coll Cardiol 30:468–473

    Article  PubMed  Google Scholar 

  8. Teske AJ, Prakken NH, De Boeck BW, Velthuis BK, Martens EP, Doevendans PA et al (2009) Echocardiographic tissue deformation imaging of right ventricular systolic function in endurance athletes. Eur Heart J 30:969–977

    Article  PubMed  Google Scholar 

  9. D’Andrea A, Caso P, Bossone E, Scarafile R, Riegler L, Di Salvo G et al (2010) Right ventricular myocardial involvement in either physiological or pathological left ventricular hypertrophy: an ultrasound speckle-tracking two-dimensional strain analysis. Eur J Echocardiogr 11:492–500

    Article  PubMed  Google Scholar 

  10. Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W (2002) Athlete’s heart: right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol 40:1856–1863

    Article  PubMed  Google Scholar 

  11. Markiewicz W, Sechtem U, Higgins CB (1987) Evaluation of the right ventricle by magnetic resonance imaging. Am Heart J 113:8–15

    Article  PubMed  CAS  Google Scholar 

  12. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793

    Article  PubMed  Google Scholar 

  13. Dandel M, Hetzer R (2009) Echocardiographic strain and strain rate imaging-clinical applications. Int J Cardiol 132:11–24

    Article  PubMed  Google Scholar 

  14. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  15. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  16. Lang RM, Bierig M, Devereux RB, Flachkampf FA, Foster E, Pellikka PA et al (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108

    Article  PubMed  Google Scholar 

  17. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24:277–313

    Article  PubMed  Google Scholar 

  18. Calleja AM, Jiamsripong P, Alharthi MS, Cha S, Cho EJ, McMahon EM et al (2009) Correlation of automated function imaging (AFI) to conventional strain analyses of regional and global right ventricular function. J Am Soc Echocardiogr 22:1031–1039

    Article  PubMed  Google Scholar 

  19. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE (2000) The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation 101:336–344

    Article  PubMed  CAS  Google Scholar 

  20. Henriksen E, Landelius J, Wesslen L, Arnell H, Nystrom-Rosander C, Kangro T et al (1996) Echocardiographic right and left ventricular measurements in male elite endurance athletes. Eur Heart J 17:1121–1128

    Article  PubMed  CAS  Google Scholar 

  21. La Gerche A, Connelly KA, Mooney DJ, MacIsaac AI, Prior DL (2008) Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart 94:860–866

    Article  PubMed  Google Scholar 

  22. D’Andrea A, Caso P, Sarubbi B, Limongelli G, Liccardo B, Cice G (2003) Right ventricular myocardial adaptation to different training protocols in top-level athletes. Echocardiography 20:329–336

    Article  PubMed  Google Scholar 

  23. La Gerche A, Burns AT, Mooney DJ, Inder WJ, Taylor AJ, Bogaert J (2012) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33:998–1006

    Article  PubMed  Google Scholar 

  24. Kasikcioglu E, Oflaz H, Akhan H, Kayserilioglu A (2005) Right ventricular myocardial performance index and exercise capacity in athletes. Heart Vessel 20:147–152

    Article  Google Scholar 

  25. Anavekar NS, Gerson D, Skali H, Kwong RY, Yucel EK, Solomon SD (2007) Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study. Echocardiography 24:452–456

    Article  PubMed  Google Scholar 

  26. Teske AJ, De Boeck BW, Olimulder M, Prakken NH, Doevendans PA, Cramer MJ (2008) Echocardiographic assessment of regional right ventricular function: a head-to-head comparison between 2-dimensional and tissue Doppler-derived strain analysis. J Am Soc Echocardiogr 21:275–283

    Article  PubMed  Google Scholar 

  27. Teske AJ, De Boeck BWL, Melman PG, Sieswerda GT, Doevendans PA, Cramer MJ (2007) Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking. Cardiovasc Ultrasound 5:27

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have declared that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziya Simsek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simsek, Z., Tas, M.H., Gunay, E. et al. Speckle-tracking echocardiographic imaging of the right ventricular systolic and diastolic parameters in chronic exercise. Int J Cardiovasc Imaging 29, 1265–1271 (2013). https://doi.org/10.1007/s10554-013-0204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-013-0204-z

Keywords

Navigation