Skip to main content
Log in

CYP2C9 variants increase risk of colorectal adenoma recurrence and modify associations with smoking but not aspirin treatment

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

The cytochrome P450 2C9 enzyme (CYP2C9) is involved in metabolism of endogenous compounds, drugs, and procarcinogens. Two common nonsynonymous polymorphisms in CYP2C9 are associated with reduced enzyme activity: CYP2C9*2 (rs1799853, R144C) and CYP2C9*3 (rs1057910, I359L).

Methods

We investigated whether CYP2C9 genotype was associated with risk of colorectal adenoma and/or modified associations with aspirin treatment or cigarette smoking in a cohort of 928 participants in a randomized trial of aspirin chemoprevention. Generalized linear regression was used to compute relative risks (RRs) and 95 % confidence intervals (95 % CIs). Multiplicative interactions terms were used to assess effect modification.

Results

CYP2C9 genotype was associated with increased risks for adenoma recurrence of 29 % (RR = 1.29, 95 % CI 1.09–1.51) for ≥1 variant allele (CYP2C9*2 or *3) and 47 % (RR = 1.47, 95 % CI 1.19–1.83) for ≥1 CYP2C9*3 allele. The risk for advanced lesions or multiple (≥3) adenomas was increased by 64 % (RR = 1.64, 95 % CI 1.18–2.28) for ≥1 variant allele (CYP2C9*2 or *3) and 79 % (RR = 1.79, 95 % CI 1.16–2.75) for ≥1 CYP2C9*3 allele. Genotype modified associations with smoking, but not aspirin treatment. The adenoma risk was increased by 26 % (RR = 1.26, 95 % CI 0.99–1.58) for former smokers and 60 % (RR = 1.60, 95 % CI 1.19–2.15) for current smokers among wild-type individuals, but there was no increased risk among individuals with ≥1 variant allele (CYP2C9*2 or *3) (p interaction = 0.04).

Conclusions

Carriers of CYP2C9 variants with lower enzyme activity have increased overall risk of colorectal adenoma but reduced adenoma risk associated with cigarette smoking. These results may be due to effects on the synthesis of endogenous eicosanoids and/or reduced activation of procarcinogens in smoke by CYP2C9 variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Nebert DW, Russell DW (2002) Clinical importance of the cytochromes P450. Lancet 360:1155–1162

    Article  PubMed  CAS  Google Scholar 

  3. Panigrahy D, Kaipainen A, Greene ER, Huang S (2010) Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Rev 29:723–735

    Article  PubMed  CAS  Google Scholar 

  4. Shou M, Krausz KW, Gonzalez FJ, Gelboin HV (1996) Metabolic activation of the potent carcinogen dibenzo[a, h]anthracene by cDNA-expressed human cytochromes P450. Arch Biochem Biophys 328:201–207

    Article  PubMed  CAS  Google Scholar 

  5. Yun CH, Shimada T, Guengerich FP (1992) Roles of human liver cytochrome P4502C and 3A enzymes in the 3-hydroxylation of benzo(a)pyrene. Cancer Res 52:1868–1874

    PubMed  CAS  Google Scholar 

  6. Mo SL, Zhou ZW, Yang LP, Wei MQ, Zhou SF (2009) New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part I. Curr Drug Metab 10:1075–1126

    Article  PubMed  CAS  Google Scholar 

  7. Shou M, Korzekwa KR, Crespi CL, Gonzalez FJ, Gelboin HV (1994) The role of 12 cDNA-expressed human, rodent, and rabbit cytochromes P450 in the metabolism of benzo[a]pyrene and benzo[a]pyrene trans-7,8-dihydrodiol. Mol Carcinog 10:159–168

    Article  PubMed  CAS  Google Scholar 

  8. Zhou SF, Zhou ZW, Huang M (2010) Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology 278:165–188

    Article  PubMed  CAS  Google Scholar 

  9. Rokitta D, Fuhr U (2010) Comparison of enzyme kinetic parameters obtained in vitro for reactions mediated by human CYP2C enzymes including major CYP2C9 variants. Curr Drug Metab 11:153–161

    Article  PubMed  CAS  Google Scholar 

  10. Wang B, Wang J, Huang SQ, Su HH, Zhou SF (2009) Genetic polymorphism of the human cytochrome P450 2C9 gene and its clinical significance. Curr Drug Metab 10:781–834

    Article  PubMed  CAS  Google Scholar 

  11. Van Booven D, Marsh S, McLeod H et al (2010) Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics 20:277–281

    PubMed  Google Scholar 

  12. Lindh JD, Holm L, Andersson ML, Rane A (2009) Influence of CYP2C9 genotype on warfarin dose requirements–a systematic review and meta-analysis. Eur J Clin Pharmacol 65:365–375

    Article  PubMed  CAS  Google Scholar 

  13. Bigler J, Whitton J, Lampe JW, Fosdick L, Bostick RM, Potter JD (2001) CYP2C9 and UGT1A6 genotypes modulate the protective effect of aspirin on colon adenoma risk. Cancer Res 61:3566–3569

    PubMed  CAS  Google Scholar 

  14. Chan AT, Tranah GJ, Giovannucci EL, Hunter DJ, Fuchs CS (2004) A prospective study of genetic polymorphisms in the cytochrome P-450 2C9 enzyme and the risk for distal colorectal adenoma. Clin Gastroenterol Hepatol 2:704–712

    Article  PubMed  CAS  Google Scholar 

  15. Hubner RA, Muir KR, Liu JF et al (2006) Genetic variants of UGT1A6 influence risk of colorectal adenoma recurrence. Clin Cancer Res 12:6585–6589

    Article  PubMed  CAS  Google Scholar 

  16. Samowitz WS, Wolff RK, Curtin K et al (2006) Interactions between CYP2C9 and UGT1A6 polymorphisms and nonsteroidal anti-inflammatory drugs in colorectal cancer prevention. Clin Gastroenterol Hepatol 4:894–901

    Article  PubMed  CAS  Google Scholar 

  17. Chan AT, Zauber AG, Hsu M et al (2009) Cytochrome P450 2C9 variants influence response to celecoxib for prevention of colorectal adenoma. Gastroenterology 136(2127–36):e1

    Article  Google Scholar 

  18. Cleary SP, Cotterchio M, Shi E, Gallinger S, Harper P (2010) Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk. Am J Epidemiol 172:1000–1014

    Article  PubMed  Google Scholar 

  19. Northwood EL, Elliott F, Forman D et al (2010) Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk. Pharmacogenet Genomics 20:315–326

    Article  PubMed  CAS  Google Scholar 

  20. Baron JA, Cole BF, Sandler RS et al (2003) A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 348:891–899

    Article  PubMed  CAS  Google Scholar 

  21. Cole BF, Baron JA, Sandler RS et al (2007) Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. JAMA 297:2351–2359

    Article  PubMed  CAS  Google Scholar 

  22. Enayetallah AE, French RA, Thibodeau MS, Grant DF (2004) Distribution of soluble epoxide hydrolase and of cytochrome P450 2C8, 2C9, and 2J2 in human tissues. J Histochem Cytochem 52:447–454

    Article  PubMed  CAS  Google Scholar 

  23. Enayetallah AE, French RA, Grant DF (2006) Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. J Mol Histol 37:133–141

    Article  PubMed  CAS  Google Scholar 

  24. Martinez ME, Baron JA, Lieberman DA et al (2009) A pooled analysis of advanced colorectal neoplasia diagnoses after colonoscopic polypectomy. Gastroenterology 136:832–841

    Article  PubMed  Google Scholar 

  25. Yasar U, Lundgren S, Eliasson E et al (2002) Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms. Biochem Biophys Res Commun 299:25–28

    Article  PubMed  CAS  Google Scholar 

  26. Yasar U, Bennet AM, Eliasson E et al (2003) Allelic variants of cytochromes P450 2C modify the risk for acute myocardial infarction. Pharmacogenetics 13:715–720

    Article  PubMed  CAS  Google Scholar 

  27. Cross JT, Poole EM, Ulrich CM (2008) A review of gene-drug interactions for nonsteroidal anti-inflammatory drug use in preventing colorectal neoplasia. Pharmacogenomics J 8:237–247

    Article  PubMed  CAS  Google Scholar 

  28. Ulrich CM, Bigler J, Potter JD (2006) Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer 6:130–140

    Article  PubMed  CAS  Google Scholar 

  29. The Tobacco and Genetics Consortium (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441–447

    Article  Google Scholar 

  30. Loukola A, Broms U, Maunu H et al (2008) Linkage of nicotine dependence and smoking behavior on 10q, 7q and 11p in twins with homogeneous genetic background. Pharmacogenomics J 8:209–219

    Article  PubMed  CAS  Google Scholar 

  31. Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF (2011) Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst 103:1342–1346

    Article  PubMed  CAS  Google Scholar 

  32. Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21:257–276

    Article  PubMed  CAS  Google Scholar 

  33. Ding YS, Ashley DL, Watson CH (2007) Determination of 10 carcinogenic polycyclic aromatic hydrocarbons in mainstream cigarette smoke. J Agric Food Chem 55:5966–5973

    Article  PubMed  CAS  Google Scholar 

  34. Botteri E, Iodice S, Raimondi S, Maisonneuve P, Lowenfels AB (2008) Cigarette smoking and adenomatous polyps: a meta-analysis. Gastroenterology 134:388–395

    Article  PubMed  Google Scholar 

  35. Botteri E, Iodice S, Bagnardi V, Raimondi S, Lowenfels AB, Maisonneuve P (2008) Smoking and colorectal cancer: a meta-analysis. JAMA 300:2765–2778

    Article  PubMed  CAS  Google Scholar 

  36. Tsoi KK, Pau CY, Wu WK, Chan FK, Griffiths S, Sung JJ (2009) Cigarette smoking and the risk of colorectal cancer: a meta-analysis of prospective cohort studies. Clin Gastroenterol Hepatol 7(682–8):e1–e5

    PubMed  Google Scholar 

  37. Limsui D, Vierkant RA, Tillmans LS et al (2010) Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst 102:1012–1022

    Article  PubMed  CAS  Google Scholar 

  38. Boland CR, Goel A (2010) Clearing the air on smoking and colorectal cancer. J Natl Cancer Inst 102:996–997

    Article  PubMed  CAS  Google Scholar 

  39. Campbell PT, Curtin K, Ulrich CM et al (2009) Mismatch repair polymorphisms and risk of colon cancer, tumour microsatellite instability and interactions with lifestyle factors. Gut 58:661–667

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the co-investigators, study coordinators, and participants in the Aspirin/Folate Polyp Prevention Study who made this research possible and to Bayer for providing the aspirin and placebo tablets for the clinical trial. This work was supported by grants from the National Institutes of Health, National Cancer Institute: R01 CA59005 to JA Baron; R03 CA136026 to CM Ulrich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth L. Barry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, E.L., Poole, E.M., Baron, J.A. et al. CYP2C9 variants increase risk of colorectal adenoma recurrence and modify associations with smoking but not aspirin treatment. Cancer Causes Control 24, 47–54 (2013). https://doi.org/10.1007/s10552-012-0088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-012-0088-6

Keywords

Navigation