Skip to main content

Advertisement

Log in

Transcriptomic profiling of curcumin-treated human breast stem cells identifies a role for stearoyl-coa desaturase in breast cancer prevention

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Curcumin is a potential agent for both the prevention and treatment of cancers. Curcumin treatment alone, or in combination with piperine, limits breast stem cell self-renewal, while remaining non-toxic to normal differentiated cells. We paired fluorescence-activated cell sorting with RNA sequencing to characterize the genome-wide changes induced specifically in normal breast stem cells following treatment with these compounds. We generated genome-wide maps of the transcriptional changes that occur in epithelial-like (ALDH+) and mesenchymal-like (ALDH−/CD44+/CD24−) normal breast stem/progenitor cells following treatment with curcumin and piperine. We show that curcumin targets both stem cell populations by down-regulating expression of breast stem cell genes including ALDH1A3, CD49f, PROM1, and TP63. We also identified novel genes and pathways targeted by curcumin, including downregulation of SCD. Transient siRNA knockdown of SCD in MCF10A cells significantly inhibited mammosphere formation and the mean proportion of CD44+/CD24− cells, suggesting that SCD is a regulator of breast stemness and a target of curcumin in breast stem cells. These findings extend previous reports of curcumin targeting stem cells, here in two phenotypically distinct stem/progenitor populations isolated from normal human breast tissue. We identified novel mechanisms by which curcumin and piperine target breast stem cell self-renewal, such as by targeting lipid metabolism, providing a mechanistic link between curcumin treatment and stem cell self-renewal. These results elucidate the mechanisms by which curcumin may act as a cancer-preventive compound and provide novel targets for cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  2. Brandberg Y et al (2008) Psychological reactions, quality of life, and body image after bilateral prophylactic mastectomy in women at high risk for breast cancer: a prospective 1-year follow-up study. J Clin Oncol 26(24):3943–3949

    Article  PubMed  Google Scholar 

  3. Fisher B et al (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90(18):1371–1388

    Article  CAS  PubMed  Google Scholar 

  4. Vogel VG et al (2010) Update of the national surgical adjuvant breast and bowel project study of tamoxifen and raloxifene (STAR) P-2 Trial: preventing breast cancer. Cancer Prev Res (Phila) 3(6):696–706

    Article  CAS  Google Scholar 

  5. Howell A (2008) The endocrine prevention of breast cancer. Best Pract Res Clin Endocrinol Metab 22(4):615–623

    Article  CAS  PubMed  Google Scholar 

  6. Noorafshan A, Ashkani-Esfahani S (2013) A review of therapeutic effects of curcumin. Curr Pharm Des 19(11):2032–2046

    CAS  PubMed  Google Scholar 

  7. Shoba G et al (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64(4):353–356

    Article  CAS  PubMed  Google Scholar 

  8. Dontu G et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kakarala M et al (2010) Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 122(3):777–785

    Article  CAS  PubMed  Google Scholar 

  10. Molyneux G et al (2010) BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7(3):403–417

    Article  CAS  PubMed  Google Scholar 

  11. Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Keymeulen A et al (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479(7372):189–193

    Article  PubMed  Google Scholar 

  13. Liu S et al (2013) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports 2(1):78–91

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dobin A et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  15. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  16. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological), p 289–300

  17. Lim E et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913

    Article  CAS  PubMed  Google Scholar 

  18. Svedberg J et al (1990) Free-fatty acid inhibition of insulin binding, degradation, and action in isolated rat hepatocytes. Diabetes 39(5):570–574

    Article  CAS  PubMed  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  20. R Core Team R: A language and environment for statistical computing. 2013: R Foundation for Statistical Computing, Vienna, Austria

  21. Eirew P et al (2012) Aldehyde dehydrogenase activity is a biomarker of primitive normal human mammary luminal cells. Stem Cells 30(2):344–348

    Article  CAS  PubMed  Google Scholar 

  22. Keller PJ et al (2012) Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci USA 109(8):2772–2777

    Article  CAS  PubMed  Google Scholar 

  23. Isfoss BL et al (2013) Women with familial risk for breast cancer have an increased frequency of aldehyde dehydrogenase expressing cells in breast ductules. BMC Clin Pathol 13(1):28

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kunju LP et al (2011) EZH2 and ALDH-1 mark breast epithelium at risk for breast cancer development. Mod Pathol 24(6):786–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhong Y et al (2013) Expression of ALDH1 in breast invasive ductal carcinoma: an independent predictor of early tumor relapse. Cancer Cell Int 13(1):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheridan C et al (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8(5):R59

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang C et al (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 1282:133–141

    Article  CAS  PubMed  Google Scholar 

  29. McNally SJ et al (2007) Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int J Mol Med 19(1):165–172

    CAS  PubMed  Google Scholar 

  30. Motterlini R et al (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 28(8):1303–1312

    Article  CAS  PubMed  Google Scholar 

  31. Shen SQ et al (2007) Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World J Gastroenterol 13(13):1953–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dunsmore KE, Chen PG, Wong HR (2001) Curcumin, a medicinal herbal compound capable of inducing the heat shock response. Crit Care Med 29(11):2199–2204

    Article  CAS  PubMed  Google Scholar 

  33. Newman B et al (2012) HSP90 inhibitor 17-AAG selectively eradicates lymphoma stem cells. Cancer Res 72(17):4551–4561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee CH et al (2012) Inhibition of heat shock protein (Hsp) 27 potentiates the suppressive effect of Hsp90 inhibitors in targeting breast cancer stem-like cells. Biochimie 94(6):1382–1389

    Article  CAS  PubMed  Google Scholar 

  35. Subramaniam D et al (2012) Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One 7(2):e30590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Charpentier MS et al (2014) Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment. Cancer Res 74(4):1250–1260

    Article  CAS  PubMed  Google Scholar 

  37. Whipple RA et al (2008) Vimentin filaments support extension of tubulin-based microtentacles in detached breast tumor cells. Cancer Res 68(14):5678–5688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhardwaj RK et al (2002) Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 302(2):645–650

    Article  CAS  PubMed  Google Scholar 

  39. Duangjai A et al (2013) Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins. J Nat Med 67(2):303–310

    Article  CAS  PubMed  Google Scholar 

  40. Hong J et al (2004) Modulation of arachidonic acid metabolism by curcumin and related β-diketone derivatives: effects on cytosolic phospholipase A2, cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25(9):1671–1679

    Article  CAS  PubMed  Google Scholar 

  41. Lev-Ari S et al (2006) Down-regulation of prostaglandin E2 by curcumin is correlated with inhibition of cell growth and induction of apoptosis in human colon carcinoma cell lines. J Soc Integr Oncol 4(1):21–26

    PubMed  Google Scholar 

  42. Kudo C et al (2011) Novel curcumin analogs, GO-Y030 and GO-Y078, are multi-targeted agents with enhanced abilities for multiple myeloma. Anticancer Res 31(11):3719–3726

    CAS  PubMed  Google Scholar 

  43. Shin HS et al (2014) Anti-atherosclerosis and hyperlipidemia effects of herbal mixture, Artemisia iwayomogi Kitamura and Curcuma longa Linne, in apolipoprotein E-deficient mice. J Ethnopharmacol 153(1):142–150

    Article  PubMed  Google Scholar 

  44. Igal RA (2010) Stearoyl-CoA desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer. Carcinogenesis 31(9):1509–1515

    Article  CAS  PubMed  Google Scholar 

  45. Noto A et al (2013) Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells. Cell Death Dis 4:e947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mauvoisin D et al (2013) Decreasing stearoyl-CoA desaturase-1 expression inhibits beta-catenin signaling in breast cancer cells. Cancer Sci 104(1):36–42

    Article  CAS  PubMed  Google Scholar 

  47. Rios-Esteves J, Marilyn Resh D (2013) Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins. Cell Rep 4(6):1072–1081

    Article  CAS  PubMed  Google Scholar 

  48. Coleman DT et al (2015) Curcumin prevents palmitoylation of integrin beta4 in breast cancer cells. PLoS One 10(5):e0125399

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Support for this study was provided by a grant from the National Cancer Institute (R03 CA167700). Support for JAC was provided by the Rackham Predoctoral Fellowship from the University of Michigan and Institutional Training Grants from the National Institute of Environmental Health Sciences (NIEHS) (T32 ES007062) and the National Human Genome Research Institute (NHGRI) (T32 HG00040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura S. Rozek.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 290 kb)

Supplementary material 2 (DOCX 591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colacino, J.A., McDermott, S.P., Sartor, M.A. et al. Transcriptomic profiling of curcumin-treated human breast stem cells identifies a role for stearoyl-coa desaturase in breast cancer prevention. Breast Cancer Res Treat 158, 29–41 (2016). https://doi.org/10.1007/s10549-016-3854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-3854-4

Keywords

Navigation