Skip to main content

Advertisement

Log in

Increased pSmad2 expression and cytoplasmic predominant presence of TGF-βRII in breast cancer tissue are associated with poor prognosis: results from the Shanghai Breast Cancer Study

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Perturbations of transforming growth factor-beta (TGF-β) signaling are pivotal to tumorigenesis and tumor progression through their effects on cell proliferation and cell invasion. This study aims to evaluate the association of TGF-βRII and pSmad2 protein expressions in breast tissue with clinicopathological factors and prognosis of breast cancer. Expression of the TGF-βRII and pSmad2 proteins was assessed in breast tissue of 1,045 breast cancer cases in the Shanghai Breast Cancer Study using a double immunofluorescence staining method, which was validated with standard single immunostains. TGF-βRII expression intensity was positively associated with younger age at diagnosis (P = 0.03), pre-menopausal status (P = 0.03), and lower TNM stage (P = 0.04). Cytoplasmic predominant expression pattern of TGF-βRII was associated with older age at diagnosis (P = 0.04) and invasive histological type (P = 0.03). Increased pSmad2 expression was associated with higher breast cancer grade (P < 0.01). Higher pSmad2 expression [HR (95 % CI):1.48 (1.07–2.04), P = 0.02] and cytoplasmic predominant TGF-βRII expression [HR (95 % CI): 1.80 (1.08–3.00), P = 0.02] were significantly associated with reduced cancer-free survival. Our data suggest that TGF-βRII and pSmad2 expressions are associated with certain clinical and pathologic features of breast cancer. A cytoplasmic predominant TGF-βRII expression pattern and a higher pSmad2 expression were associated with decreased breast cancer survival. Our study provides additional evidence to support the important role of TGF-β signaling in breast cancer prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CI:

Confidence interval

DFS:

Disease-free survival

ER:

Estrogen receptor

HER2:

Human epidermal growth factor receptor 2

HR:

Hazard ratio

PR:

Progesterone receptor

pSmad2:

Phosphorylated Smad2

SBCS:

Shanghai Breast Cancer Study

TGF-β:

Transforming growth factor-beta

TGF-βRI:

Transforming growth factor-beta receptor I

TGF-βRII:

Transforming growth factor-beta receptor II

TMA:

Tissue microarray

References

  1. Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424

    Article  CAS  PubMed  Google Scholar 

  2. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13:616–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Tsuchida K, Lewis KA, Mathews LS, Vale WW (1993) Molecular characterization of rat transforming growth factor-beta type II receptor. Biochem. Biophys. Res Commun 191:790–795

    Article  CAS  PubMed  Google Scholar 

  4. Takumi T, Moustakas A, Lin HY, Lodish HF (1995) Molecular characterization of a type I serine-threonine kinase receptor for TGF-beta and activin in the rat pituitary tumor cell line GH3. Exp Cell Res 216:208–214

    Article  CAS  PubMed  Google Scholar 

  5. Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  CAS  PubMed  Google Scholar 

  6. Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  CAS  PubMed  Google Scholar 

  7. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  CAS  PubMed  Google Scholar 

  8. Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang XF, Massague J (1992) TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71:1003–1014

    Article  CAS  PubMed  Google Scholar 

  9. Chowdhury S, Ammanamanchi S, Howell GM (2009) Epigenetic targeting of transforming growth factor beta receptor II and implications for cancer therapy. Mol Cell Pharmacol 1:57–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, Neumann A, Brattain MG, Chang J, Kim SJ, Kinzler KW, Vogelstein B, Willson JK, Markowitz S (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 59:320–324

    CAS  PubMed  Google Scholar 

  11. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    Article  CAS  PubMed  Google Scholar 

  12. Izumoto S, Arita N, Ohnishi T, Hiraga S, Taki T, Tomita N, Ohue M, Hayakawa T (1997) Microsatellite instability and mutated type II transforming growth factor-beta receptor gene in gliomas. Cancer Lett 112:251–256

    Article  CAS  PubMed  Google Scholar 

  13. Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL (1996) MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87:1215–1224

    Article  CAS  PubMed  Google Scholar 

  14. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shepherd RD, Kos SM, Rinker KD (2011) Flow-dependent Smad2 phosphorylation and TGIF nuclear localization in human aortic endothelial cells. Am J Physiol Heart Circ Physiol 301:H98–H107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wu G, Chen YG, Ozdamar B, Gyuricza CA, Chong PA, Wrana JL, Massague J, Shi Y (2000) Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science 287:92–97

    Article  CAS  PubMed  Google Scholar 

  17. Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massague J, Shi Y (2001) Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell 8:1277–1289

    Article  CAS  PubMed  Google Scholar 

  18. Inman GJ, Nicolas FJ, Hill CS (2002) Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 10:283–294

    Article  CAS  PubMed  Google Scholar 

  19. Grau AM, Wen W, Ramroopsingh DS, Gao YT, Zi J, Cai Q, Shu XO, Zheng W (2008) Circulating transforming growth factor-beta-1 and breast cancer prognosis: results from the Shanghai Breast Cancer Study. Breast Cancer Res Treat 112:335–341

    Article  CAS  PubMed  Google Scholar 

  20. Zheng W (2009) Genetic polymorphisms in the transforming growth factor-beta signaling pathways and breast cancer risk and survival. Methods Mol Biol 472:265–277

    Article  CAS  PubMed  Google Scholar 

  21. Gao YT, Shu XO, Dai Q, Potter JD, Brinton LA, Wen W, Sellers TA, Kushi LH, Ruan Z, Bostick RM, Jin F, Zheng W (2000) Association of menstrual and reproductive factors with breast cancer risk: results from the Shanghai Breast Cancer Study. Int J Cancer 87:295–300

    Article  CAS  PubMed  Google Scholar 

  22. Zheng W, Long J, Gao YT, Li C, Zheng Y, Xiang YB, Wen W, Levy S, Deming SL, Haines JL, Gu K, Fair AM, Cai Q, Lu W, Shu XO (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 41:324–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Su Y, Zheng Y, Zheng W, Gu K, Chen Z, Li G, Cai Q, Lu W, Shu XO (2011) Distinct distribution and prognostic significance of molecular subtypes of breast cancer in Chinese women: a population-based cohort study. BMC Cancer 11:292

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lakhani S, Ellis I, Schnitt S, Tan P, van de Vijver M (2012) WHO classification of tumours of breast. International Agency for Research on Cancer, France

    Google Scholar 

  25. Mohsin SK, Weiss H, Havighurst T, Clark GM, Berardo M, Roanh lD, To TV, Qian Z, Love RR, Allred DC (2004) Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study. Mod Pathol 17:1545–1554

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X, Loberiza FR, Klein JP, Zhang MJ (2007) A SAS macro for estimation of direct adjusted survival curves based on a stratified Cox regression model. Comput Methods Programs Biomed 88:95–101

    Article  PubMed  Google Scholar 

  27. Koli KM, Arteaga CL (1997) Predominant cytosolic localization of type II transforming growth factor beta receptors in human breast carcinoma cells. Cancer Res 57:970–977

    CAS  PubMed  Google Scholar 

  28. Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst R, Wakefield L, Barcellos-Hoff MH (2002) Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol 160:2081–2093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    Article  CAS  PubMed  Google Scholar 

  30. Massague J, Gomis RR (2006) The logic of TGFbeta signaling. FEBS Lett 580:2811–2820

    Article  CAS  PubMed  Google Scholar 

  31. Buck MB, Fritz P, Dippon J, Zugmaier G, Knabbe C (2004) Prognostic significance of transforming growth factor beta receptor II in estrogen receptor-negative breast cancer patients. Clin Cancer Res 10:491–498

    Article  CAS  PubMed  Google Scholar 

  32. Gobbi H, Arteaga CL, Jensen RA, Simpson JF, Dupont WD, Olson SJ, Schuyler PA, Plummer WD Jr, Page DL (2000) Loss of expression of transforming growth factor beta type II receptor correlates with high tumour grade in human breast in situ and invasive carcinomas. Histopathology 36:168–177

    Article  CAS  PubMed  Google Scholar 

  33. Paiva CE, Drigo SA, Rosa FE, Moraes Neto FA, Caldeira JR, Soares FA, Domingues MA, Rogatto SR (2010) Absence of transforming growth factor-beta type II receptor is associated with poorer prognosis in HER2-negative breast tumours. Ann Oncol 21:734–740

    Article  CAS  PubMed  Google Scholar 

  34. Figueroa JD, Flanders KC, Garcia-Closas M, Anderson WF, Yang XR, Matsuno RK, Duggan MA, Pfeiffer RM, Ooshima A, Cornelison R, Gierach GL, Brinton LA, Lissowska J, Peplonska B, Wakefield LM, Sherman ME (2010) Expression of TGF-beta signaling factors in invasive breast cancers: relationships with age at diagnosis and tumor characteristics. Breast Cancer Res Treat 121:727–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank study participants and research staff for their contributions and commitment to this project. We thank Regina Courtney for technical assistance and Jacqueline Stern for assistance with editing and manuscript preparation. The immunofluorescence staining was performed at the Survey and Biospecimen Shared Resource, which is supported in part by the Vanderbilt-Ingram Cancer Center (P30CA068485). This research was supported by research grants from the National Institutes of health (R01CA064277, R01CA090899, R01CA118229, and R01CA122756).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All data collection was conducted with approval of appropriate institutional review boards to protect human subjects with consent and data protection systems in place. Data analysis for this manuscript was conducted on de-identified data sets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyin Cai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Q., Su, Y., Zheng, Y. et al. Increased pSmad2 expression and cytoplasmic predominant presence of TGF-βRII in breast cancer tissue are associated with poor prognosis: results from the Shanghai Breast Cancer Study. Breast Cancer Res Treat 149, 467–477 (2015). https://doi.org/10.1007/s10549-014-3251-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3251-9

Keywords

Navigation