Skip to main content

Advertisement

Log in

HDAC inhibition does not induce estrogen receptor in human triple-negative breast cancer cell lines and patient-derived xenografts

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Several publications have suggested that histone deacetylase inhibitors (HDACis) could reverse the repression of estrogen receptor alpha (ERα) in triple-negative breast cancer (TNBC) cell lines, leading to the induction of a functional protein. Using different HDACis, vorinostat, panobinostat, and abexinostat, we therefore investigated this hypothesis in various human TNBC cell lines and patient-derived xenografts (PDXs). We used three human TNBC cell lines and three PDXs. We analyzed the in vitro toxicity of the compounds, their effects on the hormone receptors and hormone-related genes and protein expression both in vitro and in vivo models. We then explored intra-tumor histone H3 acetylation under abexinostat in xenograft models. Despite major cytotoxicity of all tested HDAC inhibitors and repression of deactylation-dependent CCND1 gene, neither ERα nor ERβ, ESR1 or ESR2 genes respectively, were re-expressed in vitro. In vivo, after administration of abexinostat for three consecutive days, we did not observe any induction of ESR1 or ESR1-related genes and ERα protein expression by RT-qPCR and immunohistochemical methods in PDXs. This observation was concomitant to the fact that in vivo administration of abexinostat increased intra-tumor histone H3 acetylation. These observations do not allow us to confirm previous studies which suggested that HDACis are able to convert ER-negative (ER−) tumors to ER-positive (ER+) tumors, and that a combination of HDAC inhibitors and hormone therapy could be proposed in the management of TNBC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29

    Article  PubMed  Google Scholar 

  2. Cuzick J, Sestak I, Baum M et al (2010) Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol 11(12):1135–1141

    Article  CAS  PubMed  Google Scholar 

  3. Linares A, Dalenc F, Balaguer P et al (2011) Manipulating protein acetylation in breast cancer: a promising approach in combination with hormonal therapies? J Biomed Biotechnol. doi:10.1155/2011/856985

    PubMed Central  PubMed  Google Scholar 

  4. Li Y, Meeran SM, Patel SN, Chen H, Hardy TM, Tollefsbol TO (2013) Epigeneticreactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol Cancer 12:9

    Article  PubMed Central  PubMed  Google Scholar 

  5. Zhou Q, Shaw PG, Davidson NE (2009) Inhibition of histone deacetylase suppresses EGFsignaling pathways by destabilizing EGFR mRNA in ER-negative human breast cancer cells. Breast Cancer Res Treat 117(2):443–451

    Article  CAS  PubMed  Google Scholar 

  6. Sharma D, Blum J, Yang X, Beaulieu N, Macleod AR, Davidson NE (2005) Release of methyl CpG binding proteins and histone deacetylase 1 from the Estrogen receptor alpha (ER) promoter upon reactivation in ER-negative human breast cancer cells. Mol Endocrinol 19(7):1740–1751

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Q, Atadja P, Davidson NE (2007) Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation. Cancer Biol Ther 6(1):64–69

    Article  CAS  PubMed  Google Scholar 

  8. Leu YW, Yan PS, Fan M, Jin VX, Liu JC, Curran EM, Welshons WV, Wei SH, Davuluri RV, Plass C, Nephew KP, Huang TH (2004) Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res 64(22):8184–8192

    Article  CAS  PubMed  Google Scholar 

  9. Sabnis GJ, Goloubeva O, Chumsri S et al (2011) Functional activation of the estrogen receptor-alpha and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res 71(5):1893–1903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sharma D, Saxena NK, Davidson NE, Vertino PM (2006) Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res 66(12):6370–6378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Grant S, Dai Y (2012) Histone deacetylase inhibitors and rational combination therapies. Adv Cancer Res 116:199–237

    Article  CAS  PubMed  Google Scholar 

  12. Ververis K, Hiong A, Karagiannis TC, Licciardi PV (2013) Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 7:47–60

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bose P, Dai Y, Grant S (2014) Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 143(3):323–336

    Article  CAS  PubMed  Google Scholar 

  14. Marangoni E, Vincent-Salomon A, Auger N et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13(13):3989–3998

    Article  CAS  PubMed  Google Scholar 

  15. Reyal F, Guyader C, Decraene C et al (2012) Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res 14(1):R11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DA, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA, Committee of the National Cancer ResearchInstitute (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102(11):1555–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. de Cremoux P, Bieche I, Tran-Perennou C et al (2004) Inter-laboratory quality control for hormone-dependent gene expression in human breast tumors using real-time reverse transcription-polymerase chain reaction. Endocr Relat Cancer 11(3):489–495

    Article  PubMed  Google Scholar 

  19. Lehmann-Che J, Hamy AS, Porcher R, Barritault M, Bouhidel F, Habuellelah H, Leman-Detours S, de Roquancourt A, Cahen-Doidy L, Bourstyn E, de Cremoux P, de Bazelaire C, Albiter M, Giacchetti S, Cuvier C, Janin A, Espié M, de Thé H, Bertheau P (2013) Molecular apocrine breast cancers are aggressive estrogen receptor negative tumors overexpressing either HER2 or GCDFP15. Breast Cancer Res 15(3):R37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lehmann-Che J, Amira-Bouhidel F, Turpin E, Antoine M, Soliman H, Legres L, Bocquet C, Bernoud R, Flandre E, Varna M, de Roquancourt A, Plassa LF, Giacchetti S, Espié M, de Bazelaire C, Cahen-Doidy L, Bourstyn E, Janin A, de Thé H, Bertheau P (2011) Immunohistochemical and molecular analyses of HER2 status in breast cancers are highly concordant and complementary approaches. Br J Cancer 104(11):1739–1746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. de Cremoux P, Rosenberg D, Goussard J et al (2008) Expression of progesterone and estradiol receptors in normal adrenal cortex, adrenocortical tumors, and primary pigmented nodular adrenocortical disease. Endocr Relat Cancer 15(2):465–474

    Article  PubMed  Google Scholar 

  22. Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE (2001) Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res 61(19):7025–7029

    CAS  PubMed  Google Scholar 

  23. Hodges-Gallagher L, Valentine CD, Bader SE, Kushner PJ (2007) Inhibition of histone deacetylase enhances the anti-proliferative action of antiestrogens on breast cancer cells and blocks tamoxifen-induced proliferation of uterine cells. Breast Cancer Res Treat 105(3):297–309

    Article  CAS  PubMed  Google Scholar 

  24. Biçaku E, Marchion DC, Schmitt ML, Münster PN (2008) Selective inhibition of histone deacetylase 2 silences progesterone receptor-mediated signaling. Cancer Res 68(5):1513–1519

    Article  PubMed  Google Scholar 

  25. Fleury L, Gerus M, Lavigne AC, Richard-Foy H, Bystricky K (2008) Eliminating epigenetic barriers induces transient hormone-regulated gene expression in estrogen receptor negative breast cancer cells. Oncogene 27(29):4075–4085

    Article  CAS  PubMed  Google Scholar 

  26. Sabnis GJ, Goloubeva OG, Kazi AA, Shah P, Brodie AH (2013) HDAC inhibitor entinostat restores responsiveness of letrozole-resistant MCF-7Ca xenografts to aromatase inhibitors through modulation of Her-2. Mol Cancer Ther 12(12):2804–2816

    Article  CAS  PubMed  Google Scholar 

  27. Rhodes LV, Tate CR, Segar HC, Burks HE, Phamduy TB, Hoang V, Elliott S, Gilliam D, Pounder FN, Anbalagan M, Chrisey DB, Rowan BG, Burow ME, Collins-Burow BM (2014) Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators. Breast Cancer Res Treat 145(3):593–604

    Article  CAS  PubMed  Google Scholar 

  28. Shah P, Gau Y, Sabnis G (2014) Histone deacetylase inhibitor entinostat reverses epithelial to mesenchymal transition of breast cancer cells by reversing the repression of E-cadherin. Breast Cancer Res Treat 143(1):99–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr V Cavaillès, and Mrs C Brunin, E Wittmer, J Wang, A Pontisso, A Chomel, D Meseure, and C Laurent for their helpful contribution to this work. The study was supported by Servier Laboratories. However, the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

Various co-authors, i.e., Gaëlle Rolland, Laurence Kraus-Berthier, Brian Paul Lockhar, and Stéphane Depil, are employees of Servier Laboratories which is developing abexinostat clinical therapeutic approach. The remaining authors declare that they have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia de Cremoux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Cremoux, P., Dalvai, M., N’Doye, O. et al. HDAC inhibition does not induce estrogen receptor in human triple-negative breast cancer cell lines and patient-derived xenografts. Breast Cancer Res Treat 149, 81–89 (2015). https://doi.org/10.1007/s10549-014-3233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3233-y

Keywords

Navigation