Skip to main content

Advertisement

Log in

Wild-type p53 inhibits pro-invasive properties of TGF-β3 in breast cancer, in part through regulation of EPHB2, a new TGF-β target gene

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The p53 tumor suppressor protein is primarily known for its important role in tumor suppression. In addition, p53 affects tumor cell migration, invasion, and epithelial-mesenchymal transition (EMT); processes also regulated by the transforming growth factor-β (TGF-β) signaling pathway. Here, we investigated the role of p53 in breast tumor cell invasion, migration, and EMT and examined the interplay of p53 with TGF-β3 in these processes. MCF-10A1 and MCF-10CA1a breast cancer cells were treated with Nutlin-3 and TGF-β3, and the effects on tumor cell migration and invasion were studied in transwell and 3D spheroid invasion assays. The effects of Nutlin-3 and TGF-β3 on EMT were examined in NMuMG cells. To identify genes involved in TGF-β-induced invasion that are modulated by p53, a Human Tumor Metastasis-specific RT-PCR array was performed. Verification of EPHB2 regulation by TGF-β3 and p53 was performed on breast cancer tumor cell lines. We demonstrate that p53 inhibits basal and TGF-β3-induced invasion, migration, and EMT in normal breast epithelial and breast cancer cells. Pharmacological activation of p53 inhibited induction of several TGF-β3 targets involved in TGF-β3-induced tumor cell invasion, i.e., matrix metallo proteinase (MMP)2, MMP9, and integrin β 3 . The ephrin-type B receptor 2 (EPHB2) gene was identified as a new TGF-β target important for TGF-β3-mediated invasion and migration, whose transcriptional activation by TGF-β3 is also inhibited by p53. The results show an intricate interplay between p53 and TGF-β3 whereby p53 inhibits the TGF-β3-induced expression of genes, e.g., EPHB2, to impede tumor cell invasion and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALK5:

Activin receptor-like kinase 5

EPHB2:

Ephrin-type B receptor 2

EMT:

Epithelial–mesenchymal transition

MMP:

Matrix metallo proteinase

MTSS1:

Metastasis suppressor 1

PAI-1:

Plasminogen activator inhibitor-1

R-Smad:

Receptor-regulated Smad

TGF-β:

Transforming growth factor-β

TβRI/II:

TGF-β type I/II receptor

References

  1. Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923

    Article  PubMed  CAS  Google Scholar 

  2. de Oca Montes, Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206

    Article  Google Scholar 

  3. Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208

    Article  PubMed  CAS  Google Scholar 

  4. Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG, Lozano G (2001) Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29:92–95

    Article  PubMed  CAS  Google Scholar 

  5. Migliorini D, Lazzerini DE, Danovi D, Jochemsen A, Capillo M, Gobbi A, Helin K, Pelicci PG, Marine JC (2002) Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 22:5527–5538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Finch RA, Donoviel DB, Potter D, Shi M, Fan A, Freed DD, Wang CY, Zambrowicz BP et al (2002) Mdmx is a negative regulator of p53 activity in vivo. Cancer Res 62:3221–3225

    PubMed  CAS  Google Scholar 

  7. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    Article  PubMed  CAS  Google Scholar 

  8. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303

    Article  PubMed  CAS  Google Scholar 

  9. Poyurovsky MV (2012) Length matters: C-terminal tails regulate Mdm2-MdmX complexes. Cell Cycle 11:1485

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M (2003) HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA 100:12009–12014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G (2006) Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 13:927–934

    Article  PubMed  CAS  Google Scholar 

  12. Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham RC, van der Houven, van Oordt et al (1996) MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 15:5349–5357

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83

    Article  PubMed  CAS  Google Scholar 

  14. Landers JE, Haines DS, Strauss JF III, George DL (1994) Enhanced translation: a novel mechanism of mdm2 oncogene overexpression identified in human tumor cells. Oncogene 9:2745–2750

    PubMed  CAS  Google Scholar 

  15. Watanabe T, Hotta T, Ichikawa A, Kinoshita T, Nagai H, Uchida T, Murate T, Saito H (1994) The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood 84:3158–3165

    PubMed  CAS  Google Scholar 

  16. Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucl Acids Res 26:3453–3459

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA, Schlegel U, Reifenberger G (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091–6096

    PubMed  CAS  Google Scholar 

  18. Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, Jochemsen AG (2001) Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res 61:1839–1842

    PubMed  CAS  Google Scholar 

  19. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, de Graaf P, Francoz S et al (2004) Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24:5835–5843

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66

    Article  PubMed  CAS  Google Scholar 

  21. Alexandrova A, Ivanov A, Chumakov P, Kopnin B, Vasiliev J (2000) Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization. Oncogene 19:5826–5830

    Article  PubMed  CAS  Google Scholar 

  22. Gadea G, de TM, Anguille C, Roux P (2007) Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol 178:23–30

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Muller PA, Vousden KH, Norman JC (2011) p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192:209–218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Muller PA, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PV, Nixon C, Karim SA et al (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32:1252–1265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA et al (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341

    Article  PubMed  Google Scholar 

  26. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S et al (2009) A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137:87–98

    Article  PubMed  CAS  Google Scholar 

  27. Hwang CI, Matoso A, Corney DC, Flesken-Nikitin A, Korner S, Wang W, Boccaccio C, Thorgeirsson SS et al (2011) Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci USA 108:14240–14245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW et al (2009) p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11:694–704

    Article  PubMed  CAS  Google Scholar 

  29. Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, Pineau P, Marchio A et al (2011) p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208:875–883

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Massague J (2008) TGFbeta in Cancer. Cell 134:215–230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer–a double-edged sword. Trends Cell Biol 11:S44–S51

    PubMed  CAS  Google Scholar 

  32. Ghellal A, Li C, Hayes M, Byrne G, Bundred N, Kumar S (2000) Prognostic significance of TGF beta 1 and TGF beta 3 in human breast carcinoma. Anticancer Res 20:4413–4418

    PubMed  CAS  Google Scholar 

  33. Sheen-Chen SM, Chen HS, Sheen CW, Eng HL, Chen WJ (2001) Serum levels of transforming growth factor beta1 in patients with breast cancer. Arch Surg 136:937–940

    Article  PubMed  CAS  Google Scholar 

  34. Ivanovic V, Todorovic-Rakovic N, Demajo M, Neskovic-Konstantinovic Z, Subota V, Ivanisevic-Milovanovic O, Nikolic-Vukosavljevic D (2003) Elevated plasma levels of transforming growth factor-beta 1 (TGF-beta 1) in patients with advanced breast cancer: association with disease progression. Eur J Cancer 39:454–461

    Article  PubMed  CAS  Google Scholar 

  35. Desruisseau S, Palmari J, Giusti C, Romain S, Martin PM, Berthois Y (2006) Determination of TGFbeta1 protein level in human primary breast cancers and its relationship with survival. Br J Cancer 94:239–246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273

    Article  PubMed  Google Scholar 

  37. Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136:3699–3714

    Article  PubMed  CAS  Google Scholar 

  38. Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113:301–314

    Article  PubMed  CAS  Google Scholar 

  39. Kalo E, Buganim Y, Shapira KE, Besserglick H, Goldfinger N, Weisz L, Stambolsky P, Henis YI, Rotter V (2007) Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. Mol Cell Biol 27:8228–8242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Gomis RR, Alarcon C, Nadal C, Van PC, Massague J (2006) C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10:203–214

    Article  PubMed  CAS  Google Scholar 

  41. Wakefield LM, Piek E, Bottinger EP (2001) TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 6:67–82

    Article  PubMed  CAS  Google Scholar 

  42. Dumont N, Arteaga CL (2000) Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2:125–132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. ten Dijke P, Goumans MJ, Itoh F, Itoh S (2002) Regulation of cell proliferation by Smad proteins. J Cell Physiol 191:1–16

    Article  PubMed  Google Scholar 

  44. Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G, ten Dijke P (2006) The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66:2202–2209

    Article  PubMed  CAS  Google Scholar 

  45. Viloria-Petit AM, David L, Jia JY, Erdemir T, Bane AL, Pinnaduwage D, Roncari L, Narimatsu M et al (2009) A role for the TGFbeta-Par6 polarity pathway in breast cancer progression. Proc Natl Acad Sci USA 106:14028–14033

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  PubMed  CAS  Google Scholar 

  47. Termen S, Tan EJ, Heldin CH, Moustakas A (2013) p53 regulates epithelial-mesenchymal transition induced by transforming growth factor beta. J Cell Physiol 228:801–813

    Article  PubMed  CAS  Google Scholar 

  48. Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D, Pollok KE, Boothman DA, Mayo LD (2010) TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Investig 120:290–302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Morris SM, Baek JY, Koszarek A, Kanngurn S, Knoblaugh SE, Grady WM (2012) Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology 55:121–131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Lam S, Lodder K, Teunisse AF, Rabelink MJ, Schutte M, Jochemsen AG (2010) Role of Mdm4 in drug sensitivity of breast cancer cells. Oncogene 29:2415–2426

    Article  PubMed  CAS  Google Scholar 

  51. Uil TG, de Vrij J, Vellinga J, Rabelink MJ, Cramer SJ, Chan OY, Pugnali M, Magnusson M et al (2009) A lentiviral vector-based adenovirus fiber-pseudotyping approach for expedited functional assessment of candidate retargeted fibers. J Gene Med 11:990–1004

    Article  PubMed  CAS  Google Scholar 

  52. Carlotti F, Bazuine M, Kekarainen T, Seppen J, Pognonec P, Maassen JA, Hoeben RC (2004) Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes. Mol Ther 9:209–217

    Article  PubMed  CAS  Google Scholar 

  53. Wiercinska E, Naber HP, Pardali E, van der Pluijm G, van Dam H, ten Dijke P (2011) The TGF-beta/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Res Treat 128:657–666

    Article  PubMed  CAS  Google Scholar 

  54. Alexandrova A, Ivanov A, Chumakov P, Kopnin B, Vasiliev J (2000) Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization. Oncogene 19:5826–5830

    Article  PubMed  CAS  Google Scholar 

  55. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  PubMed  CAS  Google Scholar 

  56. López-Díaz FJ, Gascard P, Balakrishnan SK, Zhao J, Del Rincon SV, Spruck C, Tlsty TD, Emerson BM (2013) Coordinate transcriptional and translational repression of p53 by TGF-beta1 impairs the stress response. Mol Cell 50:552–564

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lane D, Levine A (2010) p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2:a000893

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S, Piccolo S (2007) Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315:840–843

    Article  PubMed  CAS  Google Scholar 

  59. Zhang S, Ekman M, Thakur N, Bu S, Davoodpour P, Grimsby S, Tagami S, Heldin CH, Landstrom M (2006) TGFbeta1-induced activation of ATM and p53 mediates apoptosis in a Smad7-dependent manner. Cell Cycle 5:2787–2795

    Article  PubMed  CAS  Google Scholar 

  60. Wang SE, Narasanna A, Whitell CW, Wu FY, Friedman DB, Arteaga CL (2007) Convergence of p53 and transforming growth factor beta (TGFbeta) signaling on activating expression of the tumor suppressor gene maspin in mammary epithelial cells. J Biol Chem 282:5661–5669

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Yam CH, Siu WY, Arooz T, Chiu CH, Lau A, Wang XQ, Poon RY (1999) MDM2 and MDMX inhibit the transcriptional activity of ectopically expressed SMAD proteins. Cancer Res 59:5075–5078

    PubMed  CAS  Google Scholar 

  62. Kadakia M, Brown TL, McGorry MM, Berberich SJ (2002) MdmX inhibits Smad transactivation. Oncogene 21:8776–8785

    Article  PubMed  CAS  Google Scholar 

  63. Wang SD, Rath P, Lal B, Richard JP, Li Y, Goodwin CR, Laterra J, Xia S (2012) EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene 31:5132–5143

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Herath NI, Doecke J, Spanevello MD, Leggett BA, Boyd AW (2009) Epigenetic silencing of EphA1 expression in colorectal cancer is correlated with poor survival. Br J Cancer 100:1095–1102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Herath NI, Spanevello MD, Doecke JD, Smith FM, Pouponnot C, Boyd AW (2012) Complex expression patterns of Eph receptor tyrosine kinases and their ephrin ligands in colorectal carcinogenesis. Eur J Cancer 48:753–762

    Article  PubMed  CAS  Google Scholar 

  66. Hafner C, Becker B, Landthaler M, Vogt T (2006) Expression profile of Eph receptors and ephrin ligands in human skin and downregulation of EphA1 in nonmelanoma skin cancer. Mod Pathol 19:1369–1377

    Article  PubMed  CAS  Google Scholar 

  67. Hafner C, Bataille F, Meyer S, Becker B, Roesch A, Landthaler M, Vogt T (2003) Loss of EphB6 expression in metastatic melanoma. Int J Oncol 23:1553–1559

    PubMed  CAS  Google Scholar 

  68. Sikkema AH, den Dunnen WF, Hulleman E, van Vuurden DG, Garcia-Manero G, Yang H, Scherpen FJ, Kampen KR et al (2012) EphB2 activity plays a pivotal role in pediatric medulloblastoma cell adhesion and invasion. Neuro Oncol 14:1125–1135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10:165–180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Wu Q, Suo Z, Risberg B, Karlsson MG, Villman K, Nesland JM (2004) Expression of Ephb2 and Ephb4 in breast carcinoma. Pathol Oncol Res 10:26–33

    Article  PubMed  CAS  Google Scholar 

  71. Chukkapalli S, Amessou M, Dilly AK, Dekhil H, Zhao J, Liu Q, Bejna A, Thomas RD et al (2014) Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Exp Cell Res 320:233–246

    Article  PubMed  CAS  Google Scholar 

  72. Wu Q, Suo Z, Kristensen GB, Baekelandt M, Nesland JM (2006) The prognostic impact of EphB2/B4 expression on patients with advanced ovarian carcinoma. Gynecol Oncol 102:15–21

    Article  PubMed  CAS  Google Scholar 

  73. Gao Q, Liu W, Cai J, Li M, Gao Y, Lin W, Li Z (2014) EphB2 promotes cervical cancer progression by inducing epithelial-mesenchymal transition. Hum Pathol 45:372–381

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. F. Miller for providing the MCF-10A1 and MCF-10CA1a cell lines, Dr. K. Iwata for providing TGF-β3, Dr. M. Kandouz for providing EPHB2 expression construct, and Dr. A. Levine and Dr. M. Maurice for providing anti-Mdm2 and anti-USP7 antibodies, respectively. We thank Dr. D. Baker for critically reading and editing the manuscript. This study was supported by Grants from Worldwide Cancer Research (formerly known as Association for International Cancer Research (09-0073) and Tumor Host Genomics (518198).

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aart G. Jochemsen.

Additional information

Suzanne Lam and Eliza Wiercinska have equally contributed to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2014_3147_MOESM1_ESM.pdf

Supplementary material 1 (PDF 361 kb). Supplementary Fig. 1. PAI-1 expression is not inhibited by p53 activation. a MCF-10CA1a, b SK-BR-7, c SUM102PT cells were treated with 5 ng/ml TGF-β3 and/or 10 μM Nutlin-3 for 24 h. Total RNA was extracted, reverse transcribed and analyzed for PAI-1 mRNA expression by real-time PCR. Results are expressed as mean ± SD of triplicate wells. ***P < 0.001 compared to mock-treated cells

10549_2014_3147_MOESM2_ESM.pdf

Supplementary material 2 (PDF 313 kb). Supplementary Fig. 2. EPHB2 expression is induced by TGF-β3 in MCF-10A1 and MCF-10CA1a cells. MCF-10A1 and MCF-10CA1a cells were treated with 5 ng/ml TGF-β3 for 6 h. Total RNA was extracted, reverse transcribed and analyzed for PAI-1 mRNA expression by real-time PCR. Results are expressed as mean ± SD of triplicate wells

Supplementary material 3 (PDF 14 kb)

Supplementary material 4 (PDF 158 kb)

Supplementary material 5 (PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, S., Wiercinska, E., Teunisse, A.F.A.S. et al. Wild-type p53 inhibits pro-invasive properties of TGF-β3 in breast cancer, in part through regulation of EPHB2, a new TGF-β target gene. Breast Cancer Res Treat 148, 7–18 (2014). https://doi.org/10.1007/s10549-014-3147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3147-8

Keywords

Navigation