Skip to main content

Advertisement

Log in

Notch2 activation is protective against anticancer effects of zerumbone in human breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We showed previously that zerumbone (ZER), a sesquiterpene isolated from subtropical ginger, inhibited in vitro (MCF-7 and MDA-MB-231cells) and in vivo (MDA-MB-231 cells) growth of human breast cancer cells in association with apoptosis induction. Here, we investigated the role of Notch receptors in anticancer effects of ZER (cell migration inhibition and apoptosis induction) using breast cancer cells. Western blotting was performed to determine protein expression changes. Effect of ZER on transcriptional activity of Notch was assessed by luciferase reporter assays. Transfection with small hairpin RNA or small interfering RNA was performed for knockdown of Notch2 or Presenilin-1 protein. Cell migration and apoptosis were quantitated by Boyden chamber assay and flow cytometry, respectively. Exposure of MDA-MB-231, MCF-7, and SUM159 cells to ZER resulted in increased cleavage of Notch2 in each cell line. On the other hand, levels of cleaved Notch1 and Notch4 proteins were decreased following ZER treatment. Increased cleavage of Notch2 in ZER-treated cells was accompanied by induction of Presenilin-1 protein and transcriptional activation of Notch. Inhibition of cell migration as well as apoptosis induction resulting from ZER exposure was significantly augmented by knockdown of Notch2 protein. ZER-mediated cleavage of Notch2 protein in MDA-MB-231 cells was markedly attenuated upon RNA interference of Presenilin-1. Knockdown of Presenilin-1 protein also resulted in escalation of ZER-induced apoptosis. The present study indicates that Notch2 activation by ZER inhibits its proapoptotic and anti-migratory response at least in breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HES-1:

Hairy and enhancer of split-1

HEY-1:

Hairy/enhancer-of-split related with YRPW motif protein 1

PBS:

Phosphate-buffered saline

PARP:

Poly(ADP-ribose)-polymerase

RT-PCR:

Reverse transcription-polymerase chain reaction

shRNA:

Small hairpin RNA

siRNA:

Small interfering RNA

ZER:

Zerumbone

References

  1. Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15(1):36–47

    CAS  PubMed  Google Scholar 

  2. Vargo-Gogola T, Rosen JM (2007) Modelling breast cancer: one size does not fit all. Nat Rev Cancer 7(9):659–672

    Article  CAS  PubMed  Google Scholar 

  3. Higgins MJ, Baselga J (2011) Breast cancer in 2010: novel targets and therapies for a personalized approach. Nat Rev Clin Oncol 8(2):65–66

    Article  PubMed  Google Scholar 

  4. Van Zitteren M, van der Net JB, Kundu S, Freedman AN, van Duijn CM, Janssens AC (2011) Genome-based prediction of breast cancer risk in the general population: a modeling study based on meta-analyses of genetic associations. Cancer Epidemiol Biomarkers Prev 20(1):9–22

    Article  PubMed  Google Scholar 

  5. Ellis MJ, Perou CM (2013) The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov 3(1):27–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30

    Article  PubMed  Google Scholar 

  7. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3(10):768–780

    Article  CAS  PubMed  Google Scholar 

  8. Singh SV, Kim SH, Sehrawat A, Arlotti JA, Hahm ER, Sakao K, Beumer JH, Jankowitz RC, Chandra-Kuntal K, Lee J, Powolny AA, Dhir R (2012) Biomarkers of phenethyl isothiocyanate-mediated mammary cancer chemoprevention in a clinically relevant mouse model. J Natl Cancer Inst 104(16):1228–1239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hahm ER, Lee J, Kim SH, Sehrawat A, Arlotti JA, Shiva SS, Bhargava R, Singh SV (2013) Metabolic alterations in mammary cancer prevention by withaferin A in a clinically-relevant mouse model. J Natl Cancer Inst 105(15):1111–1122

    Article  CAS  PubMed  Google Scholar 

  10. Sehrawat A, Arlotti JA, Murakami A, Singh SV (2012) Zerumbone causes Bax- and Bak-mediated apoptosis in human breast cancer cells and inhibits orthotopic xenograft growth in vivo. Breast Cancer Res Treat 136(2):429–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tanaka T, Shimizu M, Kohno H, Yoshitani S, Tsukio Y, Murakami A, Safitri R, Takahashi D, Yamamoto K, Koshimizu K, Ohigashi H, Mori H (2001) Chemoprevention of azoxymethane-induced rat aberrant crypt foci by dietary zerumbone isolated from Zingiber zerumbet. Life Sci 69(16):1935–1945

    Article  CAS  PubMed  Google Scholar 

  12. Murakami A, Tanaka T, Lee JY, Surh YJ, Kim HW, Kawabata K, Nakamura Y, Jiwajinda S, Ohigashi H (2004) Zerumbone, a sesquiterpene in subtropical ginger, suppresses skin tumor initiation and promotion stages in ICR mice. Int J Cancer 110(4):481–490

    Article  CAS  PubMed  Google Scholar 

  13. Kim M, Miyamoto S, Yasui Y, Oyama T, Murakami A, Tanaka T (2009) Zerumbone, a tropical ginger sesquiterpene, inhibits colon and lung carcinogenesis in mice. Int J Cancer 124(2):264–271

    Article  CAS  PubMed  Google Scholar 

  14. Abdelwahab SI, Abdul AB, Devi N, Taha MM, Al-zubairi AS, Mohan S, Mariod AA (2010) Regression of cervical intraepithelial neoplasia by zerumbone in female Balb/c mice prenatally exposed to diethylstilboestrol: involvement of mitochondria-regulated apoptosis. Exp Toxicol Pathol 62(5):461–469

    Article  CAS  PubMed  Google Scholar 

  15. Taha MM, Abdul AB, Abdullah R, Ibrahim TA, Abdelwahab SI, Mohan S (2010) Potential chemoprevention of diethylnitrosamine-initiated and 2-acetylaminofluorene-promoted hepatocarcinogenesis by zerumbone from the rhizomes of the subtropical ginger (Zingiber zerumbet). Chem Biol Interact 186(3):295–305

    Article  CAS  PubMed  Google Scholar 

  16. Murakami A, Takahashi D, Kinoshita T, Koshimizu K, Kim HW, Yoshihiro A, Nakamura Y, Jiwajinda S, Terao J, Ohigashi H (2002) Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the α, β-unsaturated carbonyl group is a prerequisite. Carcinogenesis 23(5):795–802

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura Y, Yoshida C, Murakami A, Ohigashi H, Osawa T, Uchida K (2004) Zerumbone, a tropical ginger sesquiterpene, activates phase II drug metabolizing enzymes. FEBS Lett 572(1–3):245–250

    Article  CAS  PubMed  Google Scholar 

  18. Takada Y, Murakami A, Aggarwal BB (2005) Zerumbone abolishes NF-κB and IκBα kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene 24(46):6957–6969

    Article  CAS  PubMed  Google Scholar 

  19. Xian M, Ito K, Nakazato T, Shimizu T, Chen CK, Yamato K, Murakami A, Ohigashi H, Ikeda Y, Kizaki M (2007) Zerumbone, a bioactive sesquiterpene, induces G2/M cell cycle arrest and apoptosis in leukemia cells via a Fas- and mitochondria-mediated pathway. Cancer Sci 98(1):118–126

    Article  CAS  PubMed  Google Scholar 

  20. Sakinah SA, Handayani ST, Hawariah LP (2007) Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio. Cancer Cell Int 3(7):4

    Article  Google Scholar 

  21. Hosoya T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2008) Naturally occurring small-molecule inhibitors of hedgehog/GLI-mediated transcription. Chembiochem 9(7):1082–1092

    Article  CAS  PubMed  Google Scholar 

  22. Sung B, Jhurani S, Ahn KS, Mastuo Y, Yi T, Guha S, Liu M, Aggarwal BB (2008) Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res 68(21):8938–8944

    Article  CAS  PubMed  Google Scholar 

  23. Zardawi SJ, O’Toole SA, Sutherland RL, Musgrove EA (2009) Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol Histopathol 24(3):385–398

    CAS  PubMed  Google Scholar 

  24. Zardawi SJ, Zardawi I, McNeil CM, Millar EK, McLeod D, Morey AL, Crea P, Murphy NC, Pinese M, Lopez-Knowles E, Oakes SR, Ormandy CJ, Qiu MR, Hamilton A, Spillane A, Soon Lee C, Sutherland RL, Musgrove EA, O’Toole SA (2010) High Notch1 protein expression is an early event in breast cancer development and is associated with the HER-2 molecular subtype. Histopathology 56(3):286–296

    Article  PubMed  Google Scholar 

  25. Lee J, Sehrawat A, Singh SV (2012) Withaferin A causes activation of Notch2 and Notch4 in human breast cancer cells. Breast Cancer Res Treat 136(1):45–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. O’Neill CF, Urs S, Cinelli C, Lincoln A, Nadeau RJ, León R, Toher J, Mouta-Bellum C, Friesel RE, Liaw L (2007) Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am J Pathol 171(3):1023–1036

    Article  PubMed Central  PubMed  Google Scholar 

  27. Xiao D, Vogel V, Singh SV (2006) Benzyl isothiocyanate-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species and regulated by Bax and Bak. Mol Cancer Ther 5(11):2931–2945

    Article  CAS  PubMed  Google Scholar 

  28. Xiao D, Srivastava SK, Lew KL, Zeng Y, Hershberger P, Johnson CS, Trump DL, Singh SV (2003) Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinogenesis 24(5):891–897

    Article  CAS  PubMed  Google Scholar 

  29. Sehrawat A, Singh SV (2011) Benzyl isothiocyanate inhibits epithelial-mesenchymal transition in cultured and xenografted human breast cancer cells. Cancer Prev Res (Phila) 4(7):1107–1117

    Article  CAS  Google Scholar 

  30. Aithal MG, Rajeswari N (2013) Role of Notch signalling pathway in cancer and its association with DNA methylation. J Genet 92(3):667–675

    Article  CAS  PubMed  Google Scholar 

  31. Guo S, Liu M, Gonzalez-Perez RR (2011) Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta 1815(2):197–213

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Kim SH, Sehrawat A, Singh SV (2012) Notch2 activation by benzyl isothiocyanate impedes its inhibitory effect on breast cancer cell migration. Breast Cancer Res Treat 134(3):1067–1079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dickson BC, Mulligan AM, Zhang H, Lockwood G, O’Malley FP, Egan SE, Reedijk M (2007) High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol 20(6):685–693

    Article  CAS  PubMed  Google Scholar 

  34. Hu C, Diévart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P (2006) Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 168(3):973–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I, Karsan A (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 204(12):2935–2948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65(18):8530–8537

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Fu L, Gu F, Ma Y (2011) Notch1 is involved in migration and invasion of human breast cancer cells. Oncol Rep 26(5):1295–1303

    CAS  PubMed  Google Scholar 

  38. Yamaguchi N, Oyama T, Ito E, Satoh H, Azuma S, Hayashi M, Shimizu K, Honma R, Yanagisawa Y, Nishikawa A, Kawamura M, Imai J, Ohwada S, Tatsuta K, Inoue J, Semba K, Watanabe S (2008) NOTCH3 signaling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res 68(6):1881–1888

    Article  CAS  PubMed  Google Scholar 

  39. Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70(2):709–718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gonzalez ME, Moore HM, Li X, Toy KA, Huang W, Sabel MS, Kidwell KM, Kleer CG (2014) EZH2 expands breast stem cells through activation of Notch1 signaling. Proc Natl Acad Sci USA 111(8):3098–3103

    Article  CAS  PubMed  Google Scholar 

  41. Parr C, Watkins G, Jiang WG (2004) The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med 14(5):779–786

    CAS  PubMed  Google Scholar 

  42. Zarubin T, Jing Q, New L, Han J (2005) Identification of eight genes that are potentially involved in tamoxifen sensitivity in breast cancer cells. Cell Res 15(6):439–446

    Article  CAS  PubMed  Google Scholar 

  43. Kim SH, Sehrawat A, Sakao K, Hahm ER, Singh SV (2011) Notch activation by phenethyl isothiocyanate attenuates its inhibitory effect on prostate cancer cell migration. PLoS One 6(10):e26615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hahm ER, Chandra-Kuntal K, Desai D, Amin S, Singh SV (2012) Notch activation is dispensable for d, l-sulforaphane-mediated inhibition of human prostate cancer cell migration. PLoS One 7(9):e44957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Mi L, Hood BL, Stewart NA, Xiao Z, Govind S, Wang X, Conrads TP, Veenstra TD, Chung FL (2011) Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol 24(10):1735–1743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Antony ML, Lee J, Hahm ER, Kim SH, Marcus AI, Kumari V, Ji X, Yang Z, Vowell CL, Wipf P, Uechi GT, Yates NA, Romero G, Sarkar SN, Singh SV (2014) Growth arrest by the antitumor steroidal lactone withaferin A in human breast cancer cells is associated with down-regulation and covalent binding at cysteine 303 of β-tubulin. J Biol Chem 289(3):1852–1865

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was supported by USPHS grant RO1 CA142604-05 and CA129347-07, awarded by the National Cancer Institute of the National Institutes of Health. This research project used the Flow Cytometry Facility supported in part by the Cancer Center Support Grant P30 CA047904 from the National Cancer Institute of the National Institutes of Health. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

None of the authors has any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivendra V. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehrawat, A., Sakao, K. & Singh, S.V. Notch2 activation is protective against anticancer effects of zerumbone in human breast cancer cells. Breast Cancer Res Treat 146, 543–555 (2014). https://doi.org/10.1007/s10549-014-3059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3059-7

Keywords

Navigation