Skip to main content

Advertisement

Log in

Osteolysis and pain due to experimental bone metastases are improved by treatment with rapamycin

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

In advanced breast cancer, bone metastases occur in 70 % of patients. Managing the devastating pain associated with the disease is difficult. Rapamycin is an immunomodulatory drug that targets the mammalian target of rapamycin pathway. Rapamycin has been shown to decrease osteolysis associated with metastatic breast cancer in pre-clinical models and to reduce pain in inflammatory and neuropathic models. The aim of this study was to evaluate the effectiveness of rapamycin in reducing pain associated with experimental osteolytic metastases. Bone cancer was induced by intra-tibial injections of murine mammary carcinoma cells (4T1) in immunocompetent BALB/c mice and treated intraperitoneally for up to 5 weeks with vehicle, rapamycin or pamidronate (a bisphosphonate currently used to reduce bone loss in bone cancer patients). The control group received intra-tibial injection with saline (sham) and was treated with vehicle intraperitoneally. Cancer-induced osteolysis was observed histologically and radiographically 2–3 weeks following cancer inoculation and gradually increased with time. Measures of evoked nociceptive behaviors including sensitivity to mechanical, thermal, and cold stimuli and spontaneous nociceptive behaviors (limping, guarding) were evaluated. Significant hypersensitivity to sensory stimuli developed in cancer-bearing mice compared to sham 3 weeks following inoculation. Rapamycin decreased or delayed the development of cancer-induced mechanical, heat, and cold hypersensitivity, while pamidronate reduced heat and cold hypersensitivity. Both rapamycin and pamidronate had a partial protective effect on the spontaneous nociceptive behaviors, limping and guarding. Our data suggest that rapamycin may have efficacy in the management of pain associated with metastatic breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  2. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22(14):2942–2953. doi:10.1200/jco.2004.08.181

    Article  PubMed  Google Scholar 

  3. Mackiewicz-Wysocka M, Pankowska M, Wysocki PJ (2012) Progress in the treatment of bone metastases in cancer patients. Expert Opin Investig Drugs 21(6):785–795. doi:10.1517/13543784.2012.679928

    Article  CAS  PubMed  Google Scholar 

  4. Faccio R (2011) Immune regulation of the tumor/bone vicious cycle. Ann N Y Acad Sci 1237(1):71–78. doi:10.1111/j.1749-6632.2011.06244.x

    Article  CAS  PubMed  Google Scholar 

  5. Mundy GR (1997) Mechanisms of bone metastasis. Cancer 80(8 Suppl):1546–1556. doi:10.1002/(SICI)1097-0142(19971015)80:8+<1546:AID-CNCR4>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  6. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20 Pt 2):6243s–6249s. doi:10.1158/1078-0432.ccr-06-0931

    Article  PubMed  Google Scholar 

  7. Jimenez Andrade JM, Mantyh P (2010) Cancer pain: from the development of mouse models to human clinical trials. In: Kruger L, Light AR (eds) Translational pain research: from mouse to man. CRC Press, Boca Raton. http://www.ncbi.nlm.nih.gov/books/NBK57270/

  8. Coleman RE (2000) Management of bone metastases. Oncologist 5(6):463–470. doi:10.1634/theoncologist.5-6-463

    Article  CAS  PubMed  Google Scholar 

  9. Bhaskar AK (2012) Interventional management of cancer pain. Curr Opin Support Palliat Care 6(1):1–9. doi:10.1097/SPC.0b013e32835017e7

    Article  PubMed  Google Scholar 

  10. Law BK (2005) Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol 56(1):47–60. doi:10.1016/j.critrevonc.2004.09.009

    Article  PubMed  Google Scholar 

  11. Pópulo H, Lopes JM, Soares P (2012) The mTOR signalling pathway in human cancer. Int J Mol Sci 13(2):1886–1918. doi:10.3390/ijms13021886

    Article  PubMed Central  PubMed  Google Scholar 

  12. Nakano Y, Toyosawa S, Takano Y (2004) Eccentric localization of osteocytes expressing enzymatic activities, protein, and mRNA signals for type 5 tartrate-resistant acid phosphatase (TRAP). J Histochem Cytochem 52(11):1475–1482. doi:10.1369/jhc.4A6378.2004

    Article  CAS  PubMed  Google Scholar 

  13. Lu CH, Wyszomierski SL, Tseng LM, Sun MH, Lan KH, Neal CL, Mills GB, Hortobagyi GN, Esteva FJ, Yu D (2007) Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res 13(19):5883–5888. doi:10.1158/1078-0432.ccr-06-2837

    Article  CAS  PubMed  Google Scholar 

  14. Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, Beck JT, Ito Y, Yardley D, Deleu I, Perez A, Bachelot T, Vittori L, Xu Z, Mukhopadhyay P, Lebwohl D, Hortobagyi GN (2012) Everolimus in postmenopausal hormone-receptor–positive advanced breast cancer. N Engl J Med 366(6):520–529. doi:10.1056/NEJMoa1109653

    Article  CAS  PubMed  Google Scholar 

  15. Conti F, Morelon E, Calmus Y (2003) Immunosuppressive therapy in liver transplantation. J Hepatol 39(5):664–678. doi:10.1016/S0168-8278(03)00428-8

    Article  CAS  PubMed  Google Scholar 

  16. Hussein O, Tiedemann K, Murshed M, Komarova SV (2012) Rapamycin inhibits osteolysis and improves survival in a model of experimental bone metastases. Cancer Lett 314(2):176–184. doi:10.1016/j.canlet.2011.09.026

    Article  CAS  PubMed  Google Scholar 

  17. Obara I, Tochiki KK, Géranton SM, Carr FB, Lumb BM, Liu Q, Hunt SP (2011) Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain 152(11):2582–2595. doi:10.1016/j.pain.2011.07.025

    Article  CAS  PubMed  Google Scholar 

  18. Weinfurt KP, Castel LD, Li Y, Timbie JW, Glendenning GA, Schulman KA (2004) Health-related quality of life among patients with breast cancer receiving zoledronic acid or pamidronate disodium for metastatic bone lesions. Med Care 42(2):164–175. doi:10.1097/01.mlr.0000108746.69256.45

    Article  PubMed  Google Scholar 

  19. Schwei MJ, Honore P, Rogers SD, Salak-Johnson JL, Finke MP, Ramnaraine ML, Clohisy DR, Mantyh PW (1999) Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci 19(24):10886–10897. doi:PMid:10594070

    CAS  PubMed  Google Scholar 

  20. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW (2010) Bone cancer pain. Ann N Y Acad Sci 1198(1):173–181. doi:10.1111/j.1749-6632.2009.05429.x

    Article  PubMed  Google Scholar 

  21. Currie GL, Delaney A, Bennett MI, Dickenson AH, Egan KJ, Vesterinen HM, Sena ES, Macleod MR, Colvin LA, Fallon MT (2013) Animal models of bone cancer pain: systematic review and meta-analyses. Pain 154(6):917–926. doi:10.1016/j.pain.2013.02.033

    Article  PubMed  Google Scholar 

  22. Rosol TJ, Tannehill-Gregg SH, LeRoy BE, Mandl S, Contag CH (2003) Animal models of bone metastasis. Cancer 97(S3):748–757. doi:10.1002/cncr.11150

    Article  PubMed  Google Scholar 

  23. Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J, Anderson RL (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17(2):163–170. doi:10.1023/a:1006689719505

    Article  CAS  PubMed  Google Scholar 

  24. Zwolak P, Dudek AZ, Bodempudi VD, Nguyen J, Hebbel RP, Gallus NJ, Ericson ME, Goblirsch MJ, Clohisy DR (2008) Local irradiation in combination with bevacizumab enhances radiation control of bone destruction and cancer-induced pain in a model of bone metastases. Int J Cancer 122(3):681–688. doi:10.1002/ijc.23157

    Article  CAS  PubMed  Google Scholar 

  25. Zwolak P, Jasinski P, Terai K, Gallus NJ, Ericson ME, Clohisy DR, Dudek AZ (2008) Addition of receptor tyrosine kinase inhibitor to radiation increases tumour control in an orthotopic murine model of breast cancer metastasis in bone. Eur J Cancer 44(16):2506–2517. doi:10.1016/j.ejca.2008.07.011

    Article  CAS  PubMed  Google Scholar 

  26. Hansen RR, Nielsen CK, Nasser A, Thomsen SIM, Eghorn LF, Pham Y, Schulenburg C, Syberg S, Ding M, Stojilkovic SS, Jorgensen NR, Heegaard A-M (2011) P2X7 receptor-deficient mice are susceptible to bone cancer pain. Pain 152(8):1766–1776. doi:10.1016/j.pain.2011.03.024

    Article  CAS  PubMed  Google Scholar 

  27. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110. doi:10.1016/0304-3959(83)90201-4

    Article  CAS  PubMed  Google Scholar 

  28. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63. doi:10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

  29. Choi Y, Yoon YW, Na HS, Kim SH, Chung JM (1994) Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59(3):369–376. doi:10.1016/0304-3959(94)90023-X

    Article  CAS  PubMed  Google Scholar 

  30. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88. doi:10.1016/0304-3959(88)90026-7

    Article  CAS  PubMed  Google Scholar 

  31. Honore P, Luger NM, Sabino MAC, Schwei MJ, Rogers SD, Mach DB, O’Keefe PF, Ramnaraine ML, Clohisy DR, Mantyh PW (2000) Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 6(5):521–528. doi:10.1038/74999

    Article  CAS  PubMed  Google Scholar 

  32. Cole HA, Ichikawa J, Colvin DC, O’Rear L, Schoenecker JG (2011) Quantifying intra-osseous growth of osteosarcoma in a murine model with radiographic analysis. J Orthop Res 29(12):1957–1962. doi:10.1002/jor.21474

    Article  PubMed  Google Scholar 

  33. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33. doi:10.1016/S0014-2999(03)01272-X

    Article  CAS  PubMed  Google Scholar 

  34. Barrot M (2012) Tests and models of nociception and pain in rodents. Neuroscience 211:39–50. doi:10.1016/j.neuroscience.2011.12.041

    Article  CAS  PubMed  Google Scholar 

  35. Shih MH, Kao SC, Wang W, Yaster M, Tao YX (2012) Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. J Pain 13(4):338–349. doi:10.1016/j.jpain.2011.12.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Donovan-Rodriguez T, Dickenson AH, Urch CE (2005) Gabapentin normalizes spinal neuronal responses that correlate with behavior in a rat model of cancer-induced bone pain. Anesthesiology 102(1):132–140. doi:10.1097/00000542-200501000-00022

    Article  CAS  PubMed  Google Scholar 

  37. Yoneda T, Hata K, Nakanishi M, Nagae M, Nagayama T, Wakabayashi H, Nishisho T, Sakurai T, Hiraga T (2011) Involvement of acidic microenvironment in the pathophysiology of cancer-associated bone pain. Bone 48(1):100–105. doi:10.1016/j.bone.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  38. Fulfaro F, Leto G, Badalamenti G, Arcara C, Cicero G, Valerio MR, Di Fede G, Russo A, Vitale A, Rini GB, Casuccio A, Intrivici C, Gebbia N (2005) The use of zoledronic acid in patients with bone metastases from prostate carcinoma: effect on analgesic response and bone metabolism biomarkers. J Chemother 17(5):555–559. doi:PMid:16323446

    CAS  PubMed  Google Scholar 

  39. Basu S, Nachat-Kappes R, Caldefie-Chezet F, Vasson MP (2013) Eicosanoids and adipokines in breast cancer: from molecular mechanisms to clinical considerations. Antioxid Redox Signal 18(3):323–360. doi:10.1089/ars.2011.4408

    Article  CAS  PubMed  Google Scholar 

  40. Goblirsch MJ, Zwolak PP, Clohisy DR (2006) Biology of bone cancer pain. Clin Cancer Res 12(20 Pt 2):6231s–6235s. doi:10.1158/1078-0432.ccr-06-0682

    Article  CAS  PubMed  Google Scholar 

  41. Demetri GD, Chawla SP, Ray-Coquard I, Le Cesne A, Staddon AP, Milhem MM, Penel N, Riedel RF, Bui-Nguyen B, Cranmer LD, Reichardt P, Bompas E, Alcindor T, Rushing D, Song Y, Lee RM, Ebbinghaus S, Eid JE, Loewy JW, Haluska FG, Dodion PF, Blay JY (2013) Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. J Clin Oncol 31(19):2485–2492. doi:10.1200/jco.2012.45.5766

    Article  CAS  PubMed  Google Scholar 

  42. Waqar SN, Gopalan PK, Williams K, Devarakonda S, Govindan R (2013) A phase I trial of sunitinib and rapamycin in patients with advanced non-small cell lung cancer. Chemotherapy 59(1):8–13. doi:10.1159/000348584

    Article  CAS  PubMed  Google Scholar 

  43. Ma CX, Suman VJ, Goetz M, Haluska P, Moynihan T, Nanda R, Olopade O, Pluard T, Guo Z, Chen HX, Erlichman C, Ellis MJ, Fleming GF (2013) A phase I trial of the IGF-1R antibody cixutumumab in combination with temsirolimus in patients with metastatic breast cancer. Breast Cancer Res Treat 139(1):145–153. doi:10.1007/s10549-013-2528-8

    Article  CAS  PubMed  Google Scholar 

  44. Noh WC, Mondesire WH, Peng J, Jian W, Zhang H, Dong J, Mills GB, Hung MC, Meric-Bernstam F (2004) Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res 10(3):1013–1023. doi:10.1158/1078-0432.CCR-03-0043

    Article  CAS  PubMed  Google Scholar 

  45. Francis LK, Alsayed Y, Leleu X, Jia X, Singha UK, Anderson J, Timm M, Ngo H, Lu G, Huston A, Ehrlich LA, Dimmock E, Lentzsch S, Hideshima T, Roodman GD, Anderson KC, Ghobrial IM (2006) Combination mammalian target of rapamycin inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res 12(22):6826–6835. doi:10.1158/1078-0432.ccr-06-1331

    Article  CAS  PubMed  Google Scholar 

  46. Cleeland CS, Body JJ, Stopeck A, von Moos R, Fallowfield L, Mathias SD, Patrick DL, Clemons M, Tonkin K, Masuda N, Lipton A, de Boer R, Salvagni S, Oliveira CT, Qian Y, Jiang Q, Dansey R, Braun A, Chung K (2013) Pain outcomes in patients with advanced breast cancer and bone metastases: results from a randomized, double-blind study of denosumab and zoledronic acid. Cancer 119(4):832–838. doi:10.1002/cncr.27789

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Peter Siegel for providing the 4T1 cells, Drs. Magali Millecamps and Osama Hussein for teaching and supporting the pilot experiment, Drs. Monzur Murshed and Frank Rauch for advice on histomorphometric analysis and McGill University undergraduate students Anita Ramachandran, Jingwen Chen, Katia Fox, and Robert Samberg for helping with experiments. This study was supported by the Cancer Research Society/Quebec Breast Cancer Foundation grant to LSS and SVK. DMA is supported by the Ministry of Higher Education, Egypt. SVK holds Canada Research Chair in Osteoclast Biology.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana V. Komarova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelaziz, D.M., Stone, L.S. & Komarova, S.V. Osteolysis and pain due to experimental bone metastases are improved by treatment with rapamycin. Breast Cancer Res Treat 143, 227–237 (2014). https://doi.org/10.1007/s10549-013-2799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2799-0

Keywords

Navigation