Skip to main content

Advertisement

Log in

RAGE-binding S100A8/A9 promotes the migration and invasion of human breast cancer cells through actin polymerization and epithelial–mesenchymal transition

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

An Erratum to this article was published on 21 March 2016

Abstract

S100A8/A9 proteins are members of EF-hand calcium-binding proteins secreted by neutrophils and activated monocytes. S100A8/A9 has cell growth-promoting activity at low concentrations by binding to the receptor for advanced glycation end products (RAGE). In this study, we report for the first time that S100A8/A9 promoted the invasion of breast cancer cells depending on RAGE. In addition, RAGE binding to S100A8/A9 promoted the phosphorylation of LIN-11, Isl1, and MEC-3 protein domain kinase, as well as cofilin. This phosphorylation is a critical step in cofilin recycling and actin polymerization. Interestingly, RAGE binding to S100A8/A9 enhanced cell mesenchymal properties and induced epithelial–mesenchymal transition. Mechanistically, RAGE binding to S100A8/A9 stabilized Snail through the NF-κB signaling pathway. Based on these observations, RAGE expression in breast cancer cells was associated with lymph node and distant metastases in patients with invasive ductal carcinoma. Moreover, RAGE binding to S100A8/A9 promoted lung metastasis in vivo. In summary, our in vitro and in vivo results indicated that RAGE binding to S100A8/A9 played an important role in breast cancer invasion/metastasis. This study identified both RAGE and S100A8/A9 as potential anti-invasion targets for therapeutic intervention in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mukherjee D, Zhao J (2013) The role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res 3(1):46–57

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ben-Baruch A (2008) Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin Exp Metastasis 25(4):345–356. doi:10.1007/s10585-007-9097-3

    Article  CAS  PubMed  Google Scholar 

  3. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. doi:10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  4. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13(9):1042–1049

    Article  CAS  PubMed  Google Scholar 

  5. Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C, Los M (2008) S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 83(6):1484–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saha A, Lee YC, Zhang Z, Chandra G, Su SB, Mukherjee AB (2010) Lack of an endogenous anti-inflammatory protein in mice enhances colonization of B16F10 melanoma cells in the lungs. J Biol Chem 285(14):10822–10831. doi:10.1074/jbc.M109.083550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ang CW, Nedjadi T, Sheikh AA, Tweedle EM, Tonack S, Honap S, Jenkins RE, Park BK, Schwarte-Waldhoff I, Khattak I, Azadeh B, Dodson A, Kalirai H, Neoptolemos JP, Rooney PS, Costello E (2010) Smad4 loss is associated with fewer S100A8-positive monocytes in colorectal tumors and attenuated response to S100A8 in colorectal and pancreatic cancer cells. Carcinogenesis 31(9):1541–1551. doi:10.1093/carcin/bgq137

    Article  CAS  PubMed  Google Scholar 

  8. Bierhaus A, Stern DM, Nawroth PP (2006) RAGE in inflammation: a new therapeutic target? Curr Opin Investig Drugs 7(11):985–991

    CAS  PubMed  Google Scholar 

  9. Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A (2007) S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 282(43):31317–31331. doi:10.1074/jbc.M703951200

    Article  CAS  PubMed  Google Scholar 

  10. Donato R (2007) RAGE: a single receptor for several ligands and different cellular responses: the case of certain S100 proteins. Curr Mol Med 7(8):711–724

    Article  CAS  PubMed  Google Scholar 

  11. Turovskaya O, Foell D, Sinha P, Vogl T, Newlin R, Nayak J, Nguyen M, Olsson A, Nawroth PP, Bierhaus A, Varki N, Kronenberg M, Freeze HH, Srikrishna G (2008) RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 29(10):2035–2043. doi:10.1093/carcin/bgn188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Denis M, Tanguy M, Chidaine B, Laisney MJ, Megraud F, Fravalo P (2011) Description and sources of contamination by Campylobacter spp. of river water destined for human consumption in Brittany, France. Pathol Biol (Paris) 59(5):256–263. doi:10.1016/j.patbio.2009.10.007

    Article  CAS  Google Scholar 

  13. Tafani M, Schito L, Pellegrini L, Villanova L, Marfe G, Anwar T, Rosa R, Indelicato M, Fini M, Pucci B, Russo MA (2011) Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-{kappa}B. Carcinogenesis 32(8):1167–1175. doi:10.1093/carcin/bgr101

    Article  CAS  PubMed  Google Scholar 

  14. Nasser MW, Qamri Z, Deol YS, Ravi J, Powell CA, Trikha P, Schwendener RA, Bai XF, Shilo K, Zou X, Leone G, Wolf R, Yuspa SH, Ganju RK (2012) S100A7 enhances mammary tumorigenesis through upregulation of inflammatory pathways. Cancer Res 72(3):604–615. doi:10.1158/0008-5472.CAN-11-0669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hunter MJ, Chazin WJ (1998) High level expression and dimer characterization of the S100 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14. J Biol Chem 273(20):12427–12435

    Article  CAS  PubMed  Google Scholar 

  16. van den Bos C, Rammes A, Vogl T, Boynton R, Zaia J, Sorg C, Roth J (1998) Copurification of P6, MRP8, and MRP14 from human granulocytes and separation of individual proteins. Protein Expr Purif 13(3):313–318. doi:10.1006/prep.1998.0917

    Article  PubMed  Google Scholar 

  17. Guo H, Gu F, Li W, Zhang B, Niu R, Fu L, Zhang N, Ma Y (2009) Reduction of protein kinase C zeta inhibits migration and invasion of human glioblastoma cells. J Neurochem 109(1):203–213

    Article  CAS  PubMed  Google Scholar 

  18. Sun R, Gao P, Chen L, Ma D, Wang J, Oppenheim JJ, Zhang N (2005) Protein kinase C zeta is required for epidermal growth factor-induced chemotaxis of human breast cancer cells. Cancer Res 65(4):1433–1441

    Article  CAS  PubMed  Google Scholar 

  19. Shi L, Sun X, Zhang J, Zhao C, Li H, Liu Z, Fang C, Wang X, Zhao C, Zhang X, Zhou F, Lu S, Luo R, Zhang B (2013) Gab2 expression in glioma and its implications for tumor invasion. Acta Oncol 52(8):1739–1750

    Article  CAS  PubMed  Google Scholar 

  20. Ludowyke RI, Kawasugi K, French PW (1994) PMA and calcium ionophore induce myosin and F-actin rearrangement during histamine secretion from RBL-2H3 cells. Cell Motil Cytoskeleton 29(4):354–365. doi:10.1002/cm.970290408

    Article  CAS  PubMed  Google Scholar 

  21. Chen P, Li K, Liang Y, Li L, Zhu X (2012) High NUAK1 expression correlates with poor prognosis and involved in NSCLC cells migration and invasion. Exp Lung Res. doi:10.3109/01902148.2012.744115

    Google Scholar 

  22. Shaikh FM, Seales EC, Clem WC, Hennessy KM, Zhuo Y, Bellis SL (2008) Tumor cell migration and invasion are regulated by expression of variant integrin glycoforms. Exp Cell Res 314(16):2941–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu S, Niu N, Guo H, Tang J, Guo W, Liu Z, Shi L, Sun T, Zhou F, Li H, Zhang J, Zhang B (2013) ARK5 promotes glioma cell invasion, and its elevated expression is correlated with poor clinical outcome. Eur J Cancer 49(3):752–763

    Article  CAS  PubMed  Google Scholar 

  24. Larue L, Bellacosa A (2005) Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24(50):7443–7454

    Article  CAS  PubMed  Google Scholar 

  25. Min C, Eddy SF, Sherr DH, Sonenshein GE (2008) NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 104(3):733–744

    Article  CAS  PubMed  Google Scholar 

  26. Li CW, Xia W, Huo L, Lim SO, Wu Y, Hsu JL, Chao CH, Yamaguchi H, Yang NK, Ding Q, Wang Y, Lai YJ, LaBaff AM, Wu TJ, Lin BR, Yang MH, Hortobagyi GN, Hung MC (2012) Epithelial–mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res 72(5):1290–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26(5):711–724

    Article  CAS  PubMed  Google Scholar 

  28. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G (2011) S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 9(2):133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loser K, Vogl T, Voskort M, Lueken A, Kupas V, Nacken W, Klenner L, Kuhn A, Foell D, Sorokin L, Luger TA, Roth J, Beissert S (2010) The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med 16(6):713–717

    Article  CAS  PubMed  Google Scholar 

  30. Song X, Chen X, Yamaguchi H, Mouneimne G, Condeelis JS, Eddy RJ (2006) Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells. J Cell Sci 119(Pt 14):2871–2881

    Article  CAS  PubMed  Google Scholar 

  31. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Article  CAS  PubMed  Google Scholar 

  32. Shin SR, Sanchez-Velar N, Sherr DH, Sonenshein GE (2006) 7,12-dimethylbenz(a)anthracene treatment of a c-rel mouse mammary tumor cell line induces epithelial to mesenchymal transition via activation of nuclear factor-kappaB. Cancer Res 66(5):2570–2575

    Article  CAS  PubMed  Google Scholar 

  33. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC, Wu KJ (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3):295–305

    Article  CAS  PubMed  Google Scholar 

  34. Yoon CH, Kim MJ, Lee H, Kim RK, Lim EJ, Yoo KC, Lee GH, Cui YH, Oh YS, Gye MC, Lee YY, Park IC, An S, Hwang SG, Park MJ, Suh Y, Lee SJ (2012) PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. J Biol Chem 287(23):19516–19527. doi:10.1074/jbc.M111.337428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gebhardt C, Nemeth J, Angel P, Hess J (2006) S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 72(11):1622–1631

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Scientific Foundation of China (81072068), the Young and Middle-Aged Scientists Research Awards Foundation of Shandong Province (2010BSB14050 and BS2011YY060), and the Foundation of Shandong Educational Committee (J12LK03, J10LF64, and J13LK03).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baogang Zhang.

Additional information

Chonggao Yin, Hongli Li, and Baogang Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2013_2737_MOESM1_ESM.tif

Fig. S1 Comparison of cell proliferation in breast cancer cell lines. Each data point was an average of triplicate assays. Columns, mean of triplicate measurements; Bars, standard deviation (TIFF 78 kb)

10549_2013_2737_MOESM2_ESM.tif

Fig. S2 Comparison of cell proliferation in Scr/MDA231 and SiRAGE/MDA231 cells. Each data point was an average of triplicate assays. Columns, mean of triplicate measurements; Bars, standard deviation (TIFF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, C., Li, H., Zhang, B. et al. RAGE-binding S100A8/A9 promotes the migration and invasion of human breast cancer cells through actin polymerization and epithelial–mesenchymal transition. Breast Cancer Res Treat 142, 297–309 (2013). https://doi.org/10.1007/s10549-013-2737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2737-1

Keywords

Navigation