Skip to main content

Advertisement

Log in

Organ selectivity in metastasis: regulation by chemokines and their receptors

  • Research paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Cancer metastasis results from a non-random process, in which organ selectivity by the tumor cells is largely determined by factors that are expressed at the remote organs that eventually turn into preferred sites of metastasis formation. These factors support the consecutive steps required for metastasis formation, including tumor cell adhesion to microvessel walls, extravasation into target tissue and migration. Of the different components that regulate organ selectivity, instrumental roles were recently attributed to chemokines and their receptors. The present review presents the rationale standing behind the first studies looking at the potential involvement of chemokine-related components in organ selectivity. Based on these studies and many others that followed, the current paradigm is that chemokines that are expressed at specific organs determine to large extent organ specificity by promoting tumor cell adhesion to microvessel walls, by facilitating processes of extravasation into the target tissue and by inducing tumor cell migration. Moreover, chemokines can possibly support additional steps that are required for “successful” establishment of metastases, such as tumor cell proliferation and survival. The review focuses on the CXCL12–CXCR4 pair as the role model in our current understanding of chemokine involvement in organ selectivity. This review also describes the prominent roles played by CCR7 and its corresponding chemokine ligands (CCL21, CCL19) in lymph node metastasis, and of the CCR10–CCL27 axis in melanoma skin survival and metastasis. Overall, the present discussion describes chemokines as important constituents of the tumor microenvironment at metastatic sites, dictating directionality of chemokine receptor-expressing tumor cells, facilitating their adhesion and extravasation, and eventually contributing to organ selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fidler IJ (2002) Critical determinants of metastasis. Semin Cancer Biol 12:89–96

    PubMed  Google Scholar 

  2. Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    PubMed  Google Scholar 

  3. Liotta LA (2001) An attractive force in metastasis. Nature 410:24–25

    PubMed  CAS  Google Scholar 

  4. Park CC, Bissell MJ, Barcellos-Hoff MH (2000) The influence of the microenvironment on the malignant phenotype. Mol Med Today 6:324–329

    PubMed  CAS  Google Scholar 

  5. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379

    PubMed  CAS  Google Scholar 

  6. Witz IP (2001) Presence and functions of immune components in the tumor microenvironment. Adv Exp Med Biol 495:317–324

    PubMed  CAS  Google Scholar 

  7. Witz IP, Levy-Nissenbaum O (2006) The tumor microenvironment in the post-PAGET era. Cancer Lett 242:1–10

    PubMed  CAS  Google Scholar 

  8. Ben-Baruch A (2006) The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev 25:357–371

    PubMed  CAS  Google Scholar 

  9. Ben-Baruch A (2006) Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16:38–52

    PubMed  CAS  Google Scholar 

  10. Balkwill F (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 14:171–179

    PubMed  CAS  Google Scholar 

  11. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    PubMed  CAS  Google Scholar 

  12. Craig MJ, Loberg RD (2006) CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer Metastasis Rev 25:611–619

    PubMed  CAS  Google Scholar 

  13. Ben-Baruch A (2006) Pro-malignancy and putative anti-malignancy chemokines in the regulation of breast cancer progression. Nova Science Publishers

  14. Kakinuma T, Hwang ST (2006) Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol 79:639–651

    PubMed  CAS  Google Scholar 

  15. Mantovani A, Allavena P, Sozzani S, Vecchi A, Locati M, Sica A (2004) Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin Cancer Biol 14:155–160

    PubMed  CAS  Google Scholar 

  16. Conti I, Rollins BJ (2004) CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol 14:149–154

    PubMed  CAS  Google Scholar 

  17. Zlotnik A (2006) Involvement of chemokine receptors in organ-specific metastasis. Contrib Microbiol 13:191–199

    Article  PubMed  CAS  Google Scholar 

  18. Zlotnik A (2004) Chemokines in neoplastic progression. Semin Cancer Biol 14:181–185

    PubMed  CAS  Google Scholar 

  19. Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA (2006) Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 42:768–778

    PubMed  CAS  Google Scholar 

  20. Homey B, Muller A, Zlotnik A (2002) Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2:175–184

    PubMed  CAS  Google Scholar 

  21. Salcedo R, Oppenheim JJ (2003) Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10:359–370

    PubMed  CAS  Google Scholar 

  22. Vicari AP, Caux C (2002) Chemokines in cancer. Cytokine Growth Factor Rev 13:143–154

    PubMed  CAS  Google Scholar 

  23. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176

    PubMed  CAS  Google Scholar 

  24. Locati M, Otero K, Schioppa T, Signorelli P, Perrier P, Baviera S, Sozzani S, Mantovani A (2002) The chemokine system: tuning and shaping by regulation of receptor expression and coupling in polarized responses. Allergy 57:972–982

    PubMed  CAS  Google Scholar 

  25. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    PubMed  CAS  Google Scholar 

  26. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    PubMed  CAS  Google Scholar 

  27. Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8

    PubMed  CAS  Google Scholar 

  28. Strieter RM, Belperio JA, Phillips RJ, Keane MP (2004) CXC chemokines in angiogenesis of cancer. Semin Cancer Biol 14:195–200

    PubMed  CAS  Google Scholar 

  29. Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7:243

    PubMed  Google Scholar 

  30. Sallusto F, Mackay CR, Lanzavecchia A (2000) The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 18:593–620

    PubMed  CAS  Google Scholar 

  31. Cyster JG (2000) Leukocyte migration: scent of the T zone. Curr Biol 10:R30–R33

    PubMed  CAS  Google Scholar 

  32. Kim CH, Broxmeyer HE (1999) Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J Leukoc Biol 65:6–15

    PubMed  CAS  Google Scholar 

  33. Bacon K, Baggiolini M, Broxmeyer H, Horuk R, Lindley I, Mantovani A, Maysushima K, Murphy P, Nomiyama H, Oppenheim J, Rot A, Schall T, Tsang M, Thorpe R, Van Damme J, Wadhwa M, Yoshie O, Zlotnik A, Zoon K (2002) Chemokine/chemokine receptor nomenclature. J Interferon Cytokine Res 22:1067–1068

    PubMed  Google Scholar 

  34. Devalaraja MN, Richmond A (1999) Multiple chemotactic factors: fine control or redundancy?. Trends Pharmacol Sci 20:151–156

    PubMed  CAS  Google Scholar 

  35. Mantovani A (1999) The chemokine system: redundancy for robust outputs. Immunol Today 20:254–257

    PubMed  CAS  Google Scholar 

  36. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    PubMed  CAS  Google Scholar 

  37. Lapidot T (2001) Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann N Y Acad Sci 938:83–95

    Article  PubMed  CAS  Google Scholar 

  38. Nagasawa T (2000) A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int J Hematol 72:408–411

    PubMed  CAS  Google Scholar 

  39. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    PubMed  CAS  Google Scholar 

  40. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91:4523–4530

    PubMed  CAS  Google Scholar 

  41. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    PubMed  CAS  Google Scholar 

  42. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J (2006) The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20:1915–1924

    PubMed  CAS  Google Scholar 

  43. Luker KE, Luker GD (2006) Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 238:30–41

    PubMed  CAS  Google Scholar 

  44. Wang J, Loberg R, Taichman RS (2006) The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 25:573–587

    PubMed  CAS  Google Scholar 

  45. Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N (2006) Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother 60:273–276

    PubMed  CAS  Google Scholar 

  46. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767

    PubMed  CAS  Google Scholar 

  47. Epstein RJ (2004) The CXCL12-CXCR4 chemotactic pathway as a target of adjuvant breast cancer therapies. Nat Rev Cancer 4:901–909

    PubMed  CAS  Google Scholar 

  48. Su YC, Wu MT, Huang CJ, Hou MF, Yang SF, Chai CY (2006) Expression of CXCR4 is associated with axillary lymph node status in patients with early breast cancer. Breast 15:533–539

    PubMed  Google Scholar 

  49. Cabioglu N, Sahin A, Doucet M, Yavuz E, Igci A, Engin OY, Aktas E, Bilgic S, Kiran B, Deniz G, Price JE (2005) Chemokine receptor CXCR4 expression in breast cancer as a potential predictive marker of isolated tumor cells in bone marrow. Clin Exp Metastasis 22:39–46

    PubMed  CAS  Google Scholar 

  50. Salvucci O, Bouchard A, Baccarelli A, Deschenes J, Sauter G, Simon R, Bianchi R, Basik M (2006). The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res Treat 97:275–283

    PubMed  CAS  Google Scholar 

  51. Cabioglu N, Yazici MS, Arun B, Broglio KR, Hortobagyi GN, Price JE, Sahin A (2005) CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res 11:5686–5693

    PubMed  CAS  Google Scholar 

  52. Kato M, Kitayama J, Kazama S, Nagawa H (2003) Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res 5:R144–R150

    PubMed  CAS  Google Scholar 

  53. Hao L, Zhang C, Qiu Y, Wang L, Luo Y, Jin M, Zhang Y, Guo TB, Matsushima K (2007) Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer. Cancer Lett 253:34–42

    PubMed  CAS  Google Scholar 

  54. Schmid BC, Rudas M, Rezniczek GA, Leodolter S, Zeillinger R (2004) CXCR4 is expressed in ductal carcinoma in situ of the breast and in atypical ductal hyperplasia. Breast Cancer Res Treat 84:247–250

    PubMed  CAS  Google Scholar 

  55. Kang H, Watkins G, Douglas-Jones A, Mansel RE, Jiang WG (2005) The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer. Breast 14:360–367

    PubMed  Google Scholar 

  56. Liang Z, Wu T, Lou H, Yu X, Taichman RS, Lau SK, Nie S, Umbreit J, Shim H (2004) Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res 64:4302–4308

    PubMed  CAS  Google Scholar 

  57. Shim H, Lau SK, Devi S, Yoon Y, Cho HT, Liang Z (2006) Lower expression of CXCR4 in lymph node metastases than in primary breast cancers: potential regulation by ligand-dependent degradation and HIF-1alpha. Biochem Biophys Res Commun 346:252–258

    PubMed  CAS  Google Scholar 

  58. Andre F, Cabioglu N, Assi H, Sabourin JC, Delaloge S, Sahin A, Broglio K, Spano JP, Combadiere C, Bucana C, Soria JC, Cristofanilli M (2006) Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol 17:945–951

    PubMed  CAS  Google Scholar 

  59. Tamamura H, Hori A, Kanzaki N, Hiramatsu K, Mizumoto M, Nakashima H, Yamamoto N, Otaka A, Fujii N (2003) T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 550:79–83

    PubMed  CAS  Google Scholar 

  60. Lapteva N, Yang AG, Sanders DE, Strube RW, Chen SY (2005) CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther 12:84–89

    PubMed  CAS  Google Scholar 

  61. Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, Luker GD (2004) CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64:8604–8612

    PubMed  CAS  Google Scholar 

  62. Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H (2005) Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 65:967–971

    Article  PubMed  CAS  Google Scholar 

  63. Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, Hung MC (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6:459–469

    PubMed  CAS  Google Scholar 

  64. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    PubMed  CAS  Google Scholar 

  65. Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, Broxmeyer HE, Nakshatri H (2003) NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278:21631–21638

    PubMed  CAS  Google Scholar 

  66. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    PubMed  CAS  Google Scholar 

  67. Rahman KM, Sarkar FH, Banerjee S, Wang Z, Liao DJ, Hong X, Sarkar NH (2006) Therapeutic intervention of experimental breast cancer bone metastasis by indole-3-carbinol in SCID-human mouse model. Mol Cancer Ther 5:2747–2756

    PubMed  CAS  Google Scholar 

  68. Chen Y, Stamatoyannopoulos G, Song CZ (2003) Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res 63:4801–4804

    PubMed  CAS  Google Scholar 

  69. Sun R, Gao P, Chen L, Ma D, Wang J, Oppenheim JJ, Zhang N (2005) Protein kinase C zeta is required for epidermal growth factor-induced chemotaxis of human breast cancer cells. Cancer Res 65:1433–1441

    PubMed  CAS  Google Scholar 

  70. Lechertier T, Berard M, Vassy R, Herve MA, Crepin M (2004) Transendothelial migration of two metastatic breast carcinoma cells depend on the SDF-lalpha-CXCR4 complexes. Anticancer Res 24:4011–4017

    PubMed  CAS  Google Scholar 

  71. Lee BC, Lee TH, Avraham S, Avraham HK (2004) Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2:327–338

    PubMed  CAS  Google Scholar 

  72. Bachelder RE, Wendt MA, Mercurio AM (2002) Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62:7203–7206

    PubMed  CAS  Google Scholar 

  73. Chen X, Beutler JA, McCloud TG, Loehfelm A, Yang L, Dong HF, Chertov OY, Salcedo R, Oppenheim JJ, Howard OM (2003) Tannic acid is an inhibitor of CXCL12 (SDF-1alpha)/CXCR4 with antiangiogenic activity. Clin Cancer Res 9:3115–3123

    PubMed  CAS  Google Scholar 

  74. Prasad A, Fernandis AZ, Rao Y, Ganju RK (2004) Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. J Biol Chem 279:9115–9124

    PubMed  CAS  Google Scholar 

  75. Fernandis AZ, Prasad A, Band H, Klosel R, Ganju RK (2004) Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23:157–167

    PubMed  CAS  Google Scholar 

  76. Denoyelle C, Hong L, Vannier JP, Soria J, Soria C (2003) New insights into the actions of bisphosphonate zoledronic acid in breast cancer cells by dual RhoA-dependent and -independent effects. Br J Cancer 88:1631–1640

    PubMed  CAS  Google Scholar 

  77. Grimshaw MJ, Hagemann T, Ayhan A, Gillett CE, Binder C, Balkwill FR (2004) A role for endothelin-2 and its receptors in breast tumor cell invasion. Cancer Res 64:2461–2468

    PubMed  CAS  Google Scholar 

  78. Kang H, Watkins G, Parr C, Douglas-Jones A, Mansel RE, Jiang WG (2005) Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res 7:R402–R410

    PubMed  CAS  Google Scholar 

  79. Lee BC, Lee TH, Zagozdzon R, Avraham S, Usheva A, Avraham HK (2005) Carboxyl-terminal Src kinase homologous kinase negatively regulates the chemokine receptor CXCR4 through YY1 and impairs CXCR4/CXCL12 (SDF-1alpha)-mediated breast cancer cell migration. Cancer Res 65:2840–2845

    PubMed  CAS  Google Scholar 

  80. Kishimoto H, Wang Z, Bhat-Nakshatri P, Chang D, Clarke R, Nakshatri H (2005) The p160 family coactivators regulate breast cancer cell proliferation and invasion through autocrine/paracrine activity of SDF-1alpha/CXCL12. Carcinogenesis 26:1706–1715

    PubMed  CAS  Google Scholar 

  81. Cabioglu N, Summy J, Miller C, Parikh NU, Sahin AA, Tuzlali S, Pumiglia K, Gallick GE, Price JE (2005) CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res 65:6493–6497

    PubMed  CAS  Google Scholar 

  82. Matteucci E, Locati M, Desiderio MA (2005) Hepatocyte growth factor enhances CXCR4 expression favoring breast cancer cell invasiveness. Exp Cell Res 310:176–185

    PubMed  CAS  Google Scholar 

  83. Akekawatchai C, Holland JD, Kochetkova M, Wallace JC, McColl SR (2005) Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem 280:39701–39708

    PubMed  CAS  Google Scholar 

  84. Schabath H, Runz SR, Joumaa S, Altevogt P (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119:314–325

    PubMed  CAS  Google Scholar 

  85. Ueda Y, Neel NF, Schutyser E, Raman D, Richmond A (2006) Deletion of the COOH-terminal domain of CXC chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Cancer Res 66:5665–5675

    PubMed  CAS  Google Scholar 

  86. Mehta SA, Christopherson KW, Bhat-Nakshatri P, Goulet RJ Jr, Broxmeyer HE, Kopelovich L, Nakshatri H (2007) Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene 26:3329–3337

    PubMed  CAS  Google Scholar 

  87. Hsu EL, Yoon D, Choi HH, Wang F, Taylor RT, Chen N, Zhang R, Hankinson O (2007) A proposed mechanism for the protective effect of dioxin against breast cancer. Toxicol Sci 98:436–444

    PubMed  CAS  Google Scholar 

  88. Janowska-Wieczorek A, Marquez-Curtis LA, Wysoczynski M, Ratajczak MZ (2006) Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion 46:1199–1209

    PubMed  Google Scholar 

  89. Hall JM, Korach KS (2003) Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol 17:792–803

    PubMed  CAS  Google Scholar 

  90. Kang H, Mansel RE, Jiang WG (2005) Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells. Int J Oncol 26:1429–1434

    PubMed  CAS  Google Scholar 

  91. Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M (2005) CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 24:4462–4471

    PubMed  CAS  Google Scholar 

  92. Holland JD, Kochetkova M, Akekawatchai C, Dottore M, Lopez A, McColl SR (2006) Differential functional activation of chemokine receptor CXCR4 is mediated by G proteins in breast cancer cells. Cancer Res 66:4117–4124

    PubMed  CAS  Google Scholar 

  93. Zhu ZB, Makhija SK, Lu B, Wang M, Kaliberova L, Liu B, Rivera AA, Nettelbeck DM, Mahasreshti PJ, Leath CA 3rd, Yamaoto M, Alvarez RD, Curiel DT (2004) Transcriptional targeting of adenoviral vector through the CXCR4 tumor-specific promoter. Gene Ther 11:645–648

    PubMed  CAS  Google Scholar 

  94. Stoff-Khalili MA, Stoff A, Rivera AA, Banerjee NS, Everts M, Young S, Siegal GP, Richter DF, Wang M, Dall P, Mathis JM, Zhu ZB, Curiel DT (2005) Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system. Breast Cancer Res 7:R1141–R1152

    PubMed  CAS  Google Scholar 

  95. Maroni P, Bendinelli P, Matteucci E, Desiderio MA (2007) HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis 28:267–279

    PubMed  CAS  Google Scholar 

  96. Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M (2006) p53 Attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res 66:10671–10676

    PubMed  CAS  Google Scholar 

  97. Dallol A, Da Silva NF, Viacava P, Minna JD, Bieche I, Maher ER, Latif F (2002) SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 62:5874–5880

    PubMed  CAS  Google Scholar 

  98. Grimshaw MJ, Naylor S, Balkwill FR (2002) Endothelin-2 is a hypoxia-induced autocrine survival factor for breast tumor cells. Mol Cancer Ther 1:1273–1281

    PubMed  CAS  Google Scholar 

  99. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 95:258–263

    PubMed  CAS  Google Scholar 

  100. Saeki H, Moore AM, Brown MJ, Hwang ST (1999) Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162:2472–2475

    PubMed  CAS  Google Scholar 

  101. Gunn MD (2003) Chemokine mediated control of dendritic cell migration and function. Semin Immunol 15:271–276

    PubMed  CAS  Google Scholar 

  102. Cabioglu N, Gong Y, Islam R, Broglio K, Sneige N, Sahin A, Gonzalez-Angulo A, Morandi P, Bucana C, Hortobagyi G, Cristofanilli M (2007) Expression of growth factor and chemokine receptors: new insights in the biology of inflammatory breast cancer. Ann Oncol 18:1021–1029

    PubMed  CAS  Google Scholar 

  103. Kodama J, Hasengaowa, Kusumoto T, Seki N, Matsuo T, Ojima Y, Nakamura K, Hongo A, Hiramatsu Y (2007) Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol 18:70–76

  104. Wilson JL, Burchell J, Grimshaw MJ (2006) Endothelins induce CCR7 expression by breast tumor cells via endothelin receptor A and hypoxia-inducible factor-1. Cancer Res 66:11802–11807

    PubMed  CAS  Google Scholar 

  105. Takeuchi H, Fujimoto A, Tanaka M, Yamano T, Hsueh E, Hoon DS (2004) CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res 10:2351–2358

    PubMed  CAS  Google Scholar 

  106. Gunther K, Leier J, Henning G, Dimmler A, Weissbach R, Hohenberger W, Forster R (2005) Prediction of lymph node metastasis in colorectal carcinoma by expressionof chemokine receptor CCR7. Int J Cancer 116:726–733

    PubMed  Google Scholar 

  107. Yan C, Zhu ZG, Yu YY, Ji J, Zhang Y, Ji YB, Yan M, Chen J, Liu BY, Yin HR, Lin YZ (2004) Expression of vascular endothelial growth factor C and chemokine receptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis. World J Gastroenterol 10:783–790

    PubMed  CAS  Google Scholar 

  108. Mashino K, Sadanaga N, Yamaguchi H, Tanaka F, Ohta M, Shibuta K, Inoue H, Mori M (2002) Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 62:2937–2941

    PubMed  CAS  Google Scholar 

  109. Tsuzuki H, Takahashi N, Kojima A, Narita N, Sunaga H, Takabayashi T, Fujieda S (2006) Oral and oropharyngeal squamous cell carcinomas expressing CCR7 have poor prognoses. Auris Nasus Larynx 33:37–42

    PubMed  Google Scholar 

  110. Ding Y, Shimada Y, Maeda M, Kawabe A, Kaganoi J, Komoto I, Hashimoto Y, Miyake M, Hashida H, Imamura M (2003) Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res 9:3406–3412

    PubMed  CAS  Google Scholar 

  111. Takanami I (2003) Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int J Cancer 105:186–189

    PubMed  CAS  Google Scholar 

  112. Hasegawa H, Nomura T, Kohno M, Tateishi N, Suzuki Y, Maeda N, Fujisawa R, Yoshie O, Fujita S (2000) Increased chemokine receptor CCR7/EBI1 expression enhances the infiltration of lymphoid organs by adult T-cell leukemia cells. Blood 95:30–38

    PubMed  CAS  Google Scholar 

  113. Till KJ, Lin K, Zuzel M, Cawley JC (2002) The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood 99:2977–2984

    PubMed  CAS  Google Scholar 

  114. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST (2001) Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93:1638–1643

    Article  PubMed  CAS  Google Scholar 

  115. Wang J, Xi L, Hunt JL, Gooding W, Whiteside TL, Chen Z, Godfrey TE, Ferris RL (2004) Expression pattern of chemokine receptor 6 (CCR6) and CCR7 in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Res 64:1861–1866

    PubMed  CAS  Google Scholar 

  116. Koizumi K, Kozawa Y, Ohashi Y, Nakamura ES, Aozuka Y, Sakurai H, Ichiki K, Doki Y, Misaki T, Saiki I (2007) CCL21 promotes the migration and adhesion of highly lymph node metastatic human non-small cell lung cancer Lu-99 in vitro. Oncol Rep 17:1511–1516

    PubMed  CAS  Google Scholar 

  117. Sancho M, Vieira JM, Casalou C, Mesquita M, Pereira T, Cavaco BM, Dias S, Leite V (2006) Expression and function of the chemokine receptor CCR7 in thyroid carcinomas. J Endocrinol 191:229–238

    PubMed  CAS  Google Scholar 

  118. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA (2007) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11:526–538

    PubMed  CAS  Google Scholar 

  119. Vicari AP, Treilleux I, Lebecque S (2004) Regulation of the trafficking of tumour-infiltrating dendritic cells by chemokines. Semin Cancer Biol 14:161–169

    PubMed  CAS  Google Scholar 

  120. Homey B, Wang W, Soto H, Buchanan ME, Wiesenborn A, Catron D, Muller A, McClanahan TK, Dieu-Nosjean MC, Orozco R, Ruzicka T, Lehmann P, Oldham E, Zlotnik A (2000) Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC). J Immunol 164:3465–3470

    PubMed  CAS  Google Scholar 

  121. Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J, Orozco R, Copeland NG, Jenkins NA, McEvoy LM, Zlotnik A (1999) CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci USA 96:14470–14475

    PubMed  CAS  Google Scholar 

  122. Simonetti O, Goteri G, Lucarini G, Filosa A, Pieramici T, Rubini C, Biagini G, Offidani A (2006) Potential role of CCL27 and CCR10 expression in melanoma progression and immune escape. Eur J Cancer 42:1181–1187

    PubMed  CAS  Google Scholar 

  123. Murakami T, Cardones AR, Finkelstein SE, Restifo NP, Klaunberg BA, Nestle FO, Castillo SS, Dennis PA, Hwang ST (2003) Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J Exp Med 198:1337–1347

    PubMed  CAS  Google Scholar 

  124. Murakami T, Cardones AR, Hwang ST (2004) Chemokine receptors and melanoma metastasis. J Dermatol Sci 36:71–78

    PubMed  CAS  Google Scholar 

  125. Dellacasagrande J, Schreurs OJ, Hofgaard PO, Omholt H, Steinsvoll S, Schenck K, Bogen B, Dembic Z (2003) Liver metastasis of cancer facilitated by chemokine receptor CCR6. Scand J Immunol 57:534–544

    PubMed  CAS  Google Scholar 

  126. Bendre MS, Gaddy-Kurten D, Mon-Foote T, Akel NS, Skinner RA, Nicholas RW, Suva LJ (2002) Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res 62:5571–5579

    PubMed  CAS  Google Scholar 

  127. Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ (2003) Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone 33:28–37

    PubMed  CAS  Google Scholar 

  128. Valentin G, Haas P, Gilmour D (2007) The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol 17:1026–1031

    PubMed  CAS  Google Scholar 

  129. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, Penfold ME, Sunshine MJ, Littman DR, Kuo CJ, Wei K, McMaster BE, Wright K, Howard MC, Schall TJ (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203:2201–2213

    PubMed  CAS  Google Scholar 

  130. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida K, Nishikawa S, Kishimoto T, Nagasawa T (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–594

    PubMed  CAS  Google Scholar 

  131. Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M (2003). Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42:139–148

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adit Ben-Baruch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Baruch, A. Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin Exp Metastasis 25, 345–356 (2008). https://doi.org/10.1007/s10585-007-9097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9097-3

Keywords

Navigation