Skip to main content

Advertisement

Log in

Genetic polymorphisms in centrobin and Nek2 are associated with breast cancer susceptibility in a Chinese Han population

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Centrosome aberrations have been suggested to cause chromosomal instability and aneuploidy, and eventually promote cancer development. The Centrobin and Nek2 proteins interact with each other and both are involved in centrosome duplication and chromosome segregation. This study aimed to investigate whether genetic polymorphisms in these two genes may affect breast cancer susceptibility in Chinese Han population using a haplotype-based analysis. Five single nucleotide polymorphisms (SNPs) in centrobin and four SNPs in Nek2 were genotyped in 1,215 cases of infiltrating ductal breast cancer and 1,215 age-matched cancer-free controls from Chinese Han population. The results showed that CATCG haplotype of centrobin was strongly associated with decreased breast cancer risk (adjusted OR = 0.14, 95 % CI = 0.09–0.22), which was mainly driven by the C allele of SNP rs11650083 (A>C, located in exon 12, resulting in Pro578Gln). None of the individual SNPs in Nek2 was associated with breast cancer risk. However, haplotype GTAT of Nek2 was associated with increased risk of breast cancer (adjusted OR = 1.56, 95 % CI = 1.18–2.06) and its risk was significantly elevated among women with both family history of cancer and a longer menarche-first full-term pregnancy (FFTP) interval (>11 years) (adjusted OR = 5.31, 95 % CI = 1.97–14.32). Furthermore, women harboring both at-risk haplotype GTAT of Nek2 and protective haplotype CATCG of centrobin were linked with decreased breast cancer risk, suggesting that the association between genetic variants of Nek2 and increased breast cancer risk was modified by genetic variants of centrobin. Our results indicate that genetic polymorphisms of centrobin and Nek2 are related to breast cancer susceptibility in Chinese Han women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dapic V, Carvalho MA, Monteiro AN (2005) Breast cancer susceptibility and the DNA damage response. Cancer Control 12:127–136

    PubMed  Google Scholar 

  2. Steiner E, Klubert D, Knutson D (2008) Assessing breast cancer risk in women. Am Fam Phys 78:1361–1366

    Google Scholar 

  3. Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progesterones, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15:17–35

    PubMed  CAS  Google Scholar 

  4. Antoniou AC, Easton DF (2006) Models of genetic susceptibility to breast cancer. Oncogene 25:5898–5905

    Article  PubMed  CAS  Google Scholar 

  5. Kilfoy BA, Zhang Y, Shu XO, Gao YT, Ji BT, Yang G, Li HL, Rothman N, Chow WH, Zheng W (2008) Family history of malignancies and risk of breast cancer: prospective data from the Shanghai women’s health study. Cancer Causes Control 19:1139–1145

    Article  PubMed  Google Scholar 

  6. Cleary MP, Maihle NJ (1997) The role of body mass index in the relative risk of developing premenopausal versus postmenopausal breast cancer. Proc Soc Exp Biol Med 216:28–43

    PubMed  CAS  Google Scholar 

  7. Haakinson DJ, Leeds SG, Dueck AC, Gray RJ, Wasif N, Stucky CC, Northfelt DW, Apsey HA, Pockaj B (2012) The impact of obesity on breast cancer: a retrospective review. Ann Surg Oncol 105(6):586–590. doi:10.1245/s10434-012-2320-8

    Google Scholar 

  8. Schork NJ, Murray SS, Frazer KA, Topol EJ (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19:212–219

    Article  PubMed  CAS  Google Scholar 

  9. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74:106–120

    Article  PubMed  CAS  Google Scholar 

  10. Zhao H, Pfeiffer R, Gail MH (2003) Haplotype analysis in population genetics and association studies. Pharmacogenomics 4:171–178

    Article  PubMed  Google Scholar 

  11. Anderhub SJ, Kramer A, Maier B (2012) Centrosome amplification in tumorigenesis. Cancer Lett 322(1):8–17. doi:10.1016/j.canlet.2012.02.006

    Google Scholar 

  12. Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7:1122–1144

    Article  PubMed  CAS  Google Scholar 

  13. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2:815–825

    Article  PubMed  CAS  Google Scholar 

  14. D’Assoro AB, Barrett SL, Folk C, Negron VC, Boeneman K, Busby R, Whitehead C, Stivala F, Lingle WL, Salisbury JL (2002) Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Res Treat 75:25–34

    Article  PubMed  Google Scholar 

  15. Goepfert TM, Adigun YE, Zhong L, Gay J, Medina D, Brinkley WR (2002) Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res 62:4115–4122

    PubMed  CAS  Google Scholar 

  16. Guo HQ, Gao M, Ma J, Xiao T, Zhao LL, Gao Y, Pan QJ (2007) Analysis of the cellular centrosome in fine-needle aspirations of the breast. Breast Cancer Res 9:R48

    Article  PubMed  Google Scholar 

  17. Kronenwett U, Huwendiek S, Castro J, Ried T, Auer G (2005) Characterisation of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability. Br J Cancer 92:389–395

    Article  PubMed  CAS  Google Scholar 

  18. Schneeweiss A, Sinn HP, Ehemann V, Khbeis T, Neben K, Krause U, Ho AD, Bastert G, Kramer A (2003) Centrosomal aberrations in primary invasive breast cancer are associated with nodal status and hormone receptor expression. Int J Cancer 107:346–352

    Article  PubMed  CAS  Google Scholar 

  19. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA 95:2950–2955

    Article  PubMed  CAS  Google Scholar 

  20. Ruan Y, Song AP, Wang H, Xie YT, Han JY, Sajdik C, Tian XX, Fang WG (2011) Genetic polymorphisms in AURKA and BRCA1 are associated with breast cancer susceptibility in a Chinese Han population. J Pathol 225:535–543

    Article  PubMed  CAS  Google Scholar 

  21. Zou C, Li J, Bai Y, Gunning WT, Wazer DE, Band V, Gao Q (2005) Centrobin: a novel daughter centriole-associated protein that is required for centriole duplication. J Cell Biol 171:437–445

    Article  PubMed  CAS  Google Scholar 

  22. Jeong Y, Lee J, Kim K, Yoo JC, Rhee K (2007) Characterization of NIP2/centrobin, a novel substrate of Nek2, and its potential role in microtubule stabilization. J Cell Sci 120:2106–2116

    Article  PubMed  CAS  Google Scholar 

  23. Sonn S, Jeong Y, Rhee K (2009) Nip2/centrobin may be a substrate of Nek2 that is required for proper spindle assembly during mitosis in early mouse embryos. Mol Reprod Dev 76:587–592

    Article  PubMed  CAS  Google Scholar 

  24. Sonn S, Oh GT, Rhee K (2011) Nek2 and its substrate, centrobin/Nip2, are required for proper meiotic spindle formation of the mouse oocytes. Zygote 19:15–20

    Article  PubMed  CAS  Google Scholar 

  25. Jeffery JM, Urquhart AJ, Subramaniam VN, Parton RG, Khanna KK (2010) Centrobin regulates the assembly of functional mitotic spindles. Oncogene 29:2649–2658

    Article  PubMed  CAS  Google Scholar 

  26. Fry AM (2002) The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21:6184–6194

    Article  PubMed  CAS  Google Scholar 

  27. Du J, Cai X, Yao J, Ding X, Wu Q, Pei S, Jiang K, Zhang Y, Wang W, Shi Y, Lai Y, Shen J, Teng M, Huang H, Fei Q, Reddy ES, Zhu J, Jin C, Yao X (2008) The mitotic checkpoint kinase NEK2A regulates kinetochore microtubule attachment stability. Oncogene 27:4107–4114

    Article  PubMed  CAS  Google Scholar 

  28. Fu G, Ding X, Yuan K, Aikhionbare F, Yao J, Cai X, Jiang K, Yao X (2007) Phosphorylation of human Sgo1 by NEK2A is essential for chromosome congression in mitosis. Cell Res 17:608–618

    Article  PubMed  CAS  Google Scholar 

  29. Twomey C, Wattam SL, Pillai MR, Rapley J, Baxter JE, Fry AM (2004) Nek2B stimulates zygotic centrosome assembly in Xenopus laevis in a kinase-independent manner. Dev Biol 265:384–398

    Article  PubMed  CAS  Google Scholar 

  30. Uto K, Sagata N (2000) Nek2B, a novel maternal form of Nek2 kinase, is essential for the assembly or maintenance of centrosomes in early Xenopus embryos. EMBO J 19:1816–1826

    Article  PubMed  CAS  Google Scholar 

  31. Faragher AJ, Fry AM (2003) Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol Biol Cell 14:2876–2889

    Article  PubMed  CAS  Google Scholar 

  32. Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM, Fry AM (2004) The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res 64:7370–7376

    Article  PubMed  CAS  Google Scholar 

  33. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  PubMed  CAS  Google Scholar 

  34. Hochberg Y YB (1995) Controlling the false discovery rate a practical and powerful approach to multiple testing. JR Stat Soc B 57:289–300

    Google Scholar 

  35. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  36. Liang J, Chen P, Hu Z, Shen H, Wang F, Chen L, Li M, Tang J, Wang H, Shen H (2010) Genetic variants in trinucleotide repeat-containing 9 (TNRC9) are associated with risk of estrogen receptor positive breast cancer in a Chinese population. Breast Cancer Res Treat 124:237–241

    Article  PubMed  CAS  Google Scholar 

  37. Olson JE, Wang X, Pankratz VS, Fredericksen ZS, Vachon CM, Vierkant RA, Cerhan JR, Couch FJ (2011) Centrosome-related genes, genetic variation, and risk of breast cancer. Breast Cancer Res Treat 125:221–228

    Article  PubMed  CAS  Google Scholar 

  38. Brendle A, Brandt A, Johansson R, Enquist K, Hallmans G, Hemminki K, Lenner P, Forsti A (2009) Single nucleotide polymorphisms in chromosomal instability genes and risk and clinical outcome of breast cancer: a Swedish prospective case–control study. Eur J Cancer 45:435–442

    Article  PubMed  CAS  Google Scholar 

  39. Zeng X, Shaikh FY, Harrison MK, Adon AM, Trimboli AJ, Carroll KA, Sharma N, Timmers C, Chodosh LA, Leone G, Saavedra HI (2010) The Ras oncogene signals centrosome amplification in mammary epithelial cells through cyclin D1/Cdk4 and Nek2. Oncogene 29:5103–5112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No 81171961) and Doctoral Fund of Ministry of Education of China (No 20110001110060).

Conflict of interest

We declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Xia Tian or Wei-Gang Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Xie, YT., Han, JY. et al. Genetic polymorphisms in centrobin and Nek2 are associated with breast cancer susceptibility in a Chinese Han population. Breast Cancer Res Treat 136, 241–251 (2012). https://doi.org/10.1007/s10549-012-2244-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2244-9

Keywords

Navigation