Skip to main content

Advertisement

Log in

Association study of susceptibility loci with specific breast cancer subtypes in Chinese women

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

To determine whether recent genome-wide association studies that reported 45 susceptibility loci in European women are also risk factors for breast cancer in Chinese women. We selected and genotyped 40 single nucleotide polymorphisms (SNPs) using the Sequenom iPlex platform in a female Chinese cohort of 2,901 breast cancer cases and 2,789 healthy controls. We evaluated these SNPs with the risk of breast cancer and further by estrogen receptor (ER) status, progestin (PR) status, human epidermal growth factor receptor-2 (HER-2) status, and four breast cancer subtypes (Luminal A type, Luminal B type, HER-2 overexpression type and Basal-like type). We first confirmed that the SNP rs9693444 on 8p12 was associated with breast cancer in Chinese women (P = 6.44 × 10−4). Furthermore, we identified four susceptibility loci that were associated with specific tumor subtypes. Statistically significant differences were detected with the association of rs6828523 (4q34.1/ADAM29) with ER-positive breast cancer (P = 1.27 × 10−3) and the association of rs4849887 (2q14.2) with PR-positive breast cancer (P = 1.29 × 10−3). Of the four breast cancer subtypes, the associations of rs12493607 (3p24.1/TGFBR2) with HER-2 overexpression in breast cancer (P = 1.09 × 10−3) and rs11075995 (16q12.2/FTO) with basal-like breast cancer (P = 1.64 × 10−4) were statistically significant. This study is the first to show that these 5 susceptibility loci (8p12, 4q34.1/ADAM29, 2q14.2, 3p24.1/TGFBR2, and 16q12.2/FTO) correlate with breast cancer (overall and specific subtypes) in Chinese women, which has improved our understanding of the genetic basis of specific breast cancer subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2(3):133–140

    Article  CAS  PubMed  Google Scholar 

  2. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zhang B, Li Y, Zheng X, Zuo X, Zhou F, Liang B, Zhu J, Li P, Ding Y, Huang Z (2013) A common variant in the SIAH2 locus is associated with estrogen receptor-positive breast cancer in the chinese han population. PLoS One 8(11):e79365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. D B, MR V, C H, Y L, B Z, E S, WD D, XJ Z, F W (2013) Comparison of genetic variation of breast cancer susceptibility genes in Chinese and German populations. Eur J Hum Genet 13(10):38

  5. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, Schmidt MK, Chang-Claude J, Bojesen SE, Bolla MK (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45(4):353–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Garcia-Closas M, Couch FJ, Lindstrom S, Michailidou K, Schmidt MK, Brook MN, Orr N, Rhie SK, Riboli E, Feigelson HS (2013) Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 45(4):392–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Goldhirsch A, Wood W, Coates A, Gelber R, Thürlimann B, Senn H-J (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Keyse SM (2008) Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev 27(2):253–261

    Article  CAS  PubMed  Google Scholar 

  10. Gröschl B, Bettstetter M, Giedl C, Woenckhaus M, Edmonston T, Hofstädter F, Dietmaier W (2013) Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation. Int J Cancer 132(7):1537–1546

    Article  PubMed  Google Scholar 

  11. Teutschbein J, Haydn JM, Samans B, Krause M, Eilers M, Schartl M, Meierjohann S (2010) Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins. BMC Cancer 10(1):386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sieben NL, Oosting J, Flanagan AM, Prat J, Roemen GM, Kolkman-Uljee SM, van Eijk R, Cornelisse CJ, Fleuren GJ, van Engeland M (2005) Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. J Clin Oncol 23(29):7257–7264

    Article  CAS  PubMed  Google Scholar 

  13. H-y Wang, Cheng Z, Malbon CC (2003) Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett 191(2):229–237

    Article  Google Scholar 

  14. Mochizuki S, Okada Y (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci 98(5):621–628

    Article  CAS  PubMed  Google Scholar 

  15. Shiomi T, Okada Y (2003) MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev 22(2–3):145–152

    Article  CAS  PubMed  Google Scholar 

  16. Fq Wang, So J, Reierstad S, Fishman DA (2005) Matrilysin (MMP-7) promotes invasion of ovarian cancer cells by activation of progelatinase. Int J Cancer 114(1):19–31

    Article  Google Scholar 

  17. Wei X, Moncada-Pazos A, Cal S, Soria-Valles C, Gartner J, Rudloff U, Lin JC, Rosenberg SA, López-Otín C, Samuels Y (2011) Analysis of the disintegrin-metalloproteinases family reveals ADAM29 and ADAM7 are often mutated in melanoma. Hum Mutat 32(6):E2148–E2175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Eriksson N, Benton GM, Do CB, Kiefer AK, Mountain JL, Hinds DA, Francke U, Tung JY (2012) Genetic variants associated with breast size also influence breast cancer risk. BMC Med Genet 13(1):53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ikram MS, Neill GW, Regl G, Eichberger T, Frischauf A-M, Aberger F, Quinn A, Philpott M (2004) GLI2 is expressed in normal human epidermis and BCC and induces GLI1 expression by binding to its promoter. J Investig Dermatol 122(6):1503–1509

    Article  CAS  PubMed  Google Scholar 

  20. Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, Kuroki S, Katano M (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64(17):6071–6074

    Article  CAS  PubMed  Google Scholar 

  21. Jin G, Wang L, Chen W, Hu Z, Zhou Y, Tan Y, Wang J, Hua Z, Ding W, Shen J (2007) Variant alleles of TGFB1 and TGFBR2 are associated with a decreased risk of gastric cancer in a Chinese population. Int J Cancer 120(6):1330–1335

    Article  CAS  PubMed  Google Scholar 

  22. Biswas S, Trobridge P, Romero-Gallo J, Billheimer D, Myeroff LL, Willson JK, Markowitz SD, Grady WM (2008) Mutational inactivation of TGFBR2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonal outgrowth of transforming growth factor β resistant cells. Genes Chromosom Cancer 47(2):95–106

    Article  CAS  PubMed  Google Scholar 

  23. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121(7):2750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kaklamani V, Yi N, Sadim M, Siziopikou K, Zhang K, Xu Y, Tofilon S, Agarwal S, Pasche B, Mantzoros C (2011) The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med Genet 12(1):52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  27. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101(10):736–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Cornen S, Guille A, Adélaïde J, Addou-Klouche L, Finetti P, Saade M-R, Manai M, Carbuccia N, Bekhouche I, Letessier A (2014) Candidate luminal B breast cancer genes identified by genome, gene expression and dna methylation profiling. PLoS One 9(1):e81843

    Article  PubMed Central  PubMed  Google Scholar 

  29. Network CGA (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  Google Scholar 

  30. Norum J, Andersen K, Sørlie T (2014) Lessons learned from the intrinsic subtypes of breast cancer in the quest for precision therapy. Br J Surg 100:589–598

    Google Scholar 

  31. Goldhirsch A, Winer E, Coates A, Gelber R, Piccart-Gebhart M, Thürlimann B, Senn H-J, Albain KS, André F, Bergh J (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24(9):2206–2223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all participants and the volunteers who have so willingly participated in this study, which thus made this study possible.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, Y., Li, L. et al. Association study of susceptibility loci with specific breast cancer subtypes in Chinese women. Breast Cancer Res Treat 146, 503–514 (2014). https://doi.org/10.1007/s10549-014-3041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3041-4

Keywords

Navigation